找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Applied Statistical Learning; With Case Studies in Matthias Schonlau Textbook 2023 The Editor(s) (if applicable) and The Author(s), under e

[复制链接]
楼主: Intermediary
发表于 2025-3-27 00:39:31 | 显示全部楼层
The Naive Bayes Classifier,sifier the designation “naive.” The assumption greatly simplifies calculations; the naive Bayes classifier is very fast. The assumption trades off increased bias with reduced variance making the classifier surprisingly successful. The Naive Bayes classifier often benefits from smoothing. We discuss
发表于 2025-3-27 02:18:01 | 显示全部楼层
发表于 2025-3-27 07:31:07 | 显示全部楼层
Random Forests,ition, at each split, random forests only consider a random subset of x-variables. This promotes the use of a larger number of x-variables and makes the algorithm less dependent on a small number of variables. For any one tree, roughly one third of the observations are not in the bootstrap sample an
发表于 2025-3-27 12:48:20 | 显示全部楼层
Boosting,g. We talk about variable influence as a way of computing the contribution of individual variables and contrast this approach with variable importance as used in random forests. We discuss tuning parameters and the effect of individual tuning parameters on computing time. We also introduce an increa
发表于 2025-3-27 16:31:41 | 显示全部楼层
Support Vector Machines, line and the nearest observation of either class is maximized. Often the classes are not separable, i.e., they do not form separate clouds in x-space. In that case, a cost parameter allows for a certain amount of classification error. By deriving additional x-variables (e.g., quadratic terms), we c
发表于 2025-3-27 21:04:10 | 显示全部楼层
发表于 2025-3-27 22:42:58 | 显示全部楼层
Neural Networks,or regression and multi-class classification. We discuss a number of common activation functions that contribute nonlinearity in an otherwise linear network. We cover vanishing and exploding gradients, weight initialization—to attenuate the vanishing gradient problem—stochastic gradient descent usin
发表于 2025-3-28 03:29:40 | 显示全部楼层
发表于 2025-3-28 09:43:52 | 显示全部楼层
发表于 2025-3-28 14:00:29 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-19 07:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表