找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Applied Parallel Computing: Advanced Scientific Computing; 6th International Co Juha Fagerholm,Juha Haataja,Ville Savolainen Conference pro

[复制链接]
楼主: BRISK
发表于 2025-3-28 16:53:22 | 显示全部楼层
发表于 2025-3-28 20:58:31 | 显示全部楼层
发表于 2025-3-28 23:51:05 | 显示全部楼层
A Data Mining Architecture for Clustered Environmentsibed system architecture for scalable and portable data mining architecture for clustered environment. The architecture contains modules for secure safe-thread communication, database connectivity, organized data management and efficient data analysis for generating global mining model.
发表于 2025-3-29 07:09:08 | 显示全部楼层
Automated Fitting and Rational Modeling Algorithm for EM-Based S-Parameter Data full-wave electro-magnetic simulations. The adaptive algorithm doesn’t require any a priori knowledge of the dynamics of the system to select an appropriate sample distribution and an appropriate model complexity.
发表于 2025-3-29 07:19:59 | 显示全部楼层
发表于 2025-3-29 12:32:05 | 显示全部楼层
Aufbruch zu Beginn der 60er Jahre, warehouses and large databases is to integrate data mining with OLAP in DSS. Parallel and distributed processing are also two important components of successful large-scale data mining applications. In this paper, a high performance data mining scheme is proposed. The overall architecture and the mechanism of the system are described.
发表于 2025-3-29 17:15:16 | 显示全部楼层
发表于 2025-3-29 21:35:47 | 显示全部楼层
https://doi.org/10.1007/978-3-658-42798-6uch as rule induction, clustering algorithms, decision trees, genetic algorithms, and neural networks, the possible ways to exploit parallelism are presented and discussed in detail. Finally, some promising research directions in the parallel data mining research area are outlined.
发表于 2025-3-30 00:14:56 | 显示全部楼层
发表于 2025-3-30 05:30:32 | 显示全部楼层
Parallelism in Knowledge Discovery Techniquesuch as rule induction, clustering algorithms, decision trees, genetic algorithms, and neural networks, the possible ways to exploit parallelism are presented and discussed in detail. Finally, some promising research directions in the parallel data mining research area are outlined.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 10:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表