找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Applied Machine Learning; David Forsyth Textbook 2019 Springer Nature Switzerland AG 2019 machine learning.naive bayes.nearest neighbor.SV

[复制链接]
楼主: 母牛胆小鬼
发表于 2025-3-30 10:32:56 | 显示全部楼层
发表于 2025-3-30 15:10:34 | 显示全部楼层
High Dimensional Data is hard to plot, though Sect. 4.1 suggests some tricks that are helpful. Most readers will already know the mean as a summary (it’s an easy generalization of the 1D mean). The covariance matrix may be less familiar. This is a collection of all covariances between pairs of components. We use covaria
发表于 2025-3-30 16:48:18 | 显示全部楼层
Principal Component Analysistem, we can set some components to zero, and get a representation of the data that is still accurate. The rotation and translation can be undone, yielding a dataset that is in the same coordinates as the original, but lower dimensional. The new dataset is a good approximation to the old dataset. All
发表于 2025-3-30 22:31:13 | 显示全部楼层
Low Rank Approximationsate points. This data matrix must have low rank (because the model is low dimensional) . it must be close to the original data matrix (because the model is accurate). This suggests modelling data with a low rank matrix.
发表于 2025-3-31 01:40:23 | 显示全部楼层
发表于 2025-3-31 06:32:09 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 05:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表