找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Applications of Self-Adjoint Extensions in Quantum Physics; Proceedings of a Con Pavel Exner,Petr Šeba Conference proceedings 1989 Springer

[复制链接]
楼主: CAP
发表于 2025-3-23 10:40:06 | 显示全部楼层
https://doi.org/10.1007/978-3-658-02834-3o. Further we propose a classification of singular bilinear forms with respect to a fixed selfadjoint operator A ⩾ o in H. Finally we present a construction of the singularly perturbed operator A.. Our definition of A. is based on the interpretation of b as a boundary condition for a fixed selfadjoi
发表于 2025-3-23 14:39:40 | 显示全部楼层
https://doi.org/10.1007/978-3-658-02834-3ial equations, best interpreted as equations for quaternionic valued random fields. The fields are covariant under the proper Euclidean transformations. We give necessary and sufficient conditions in terms of a given source of the infinitely divisible type, for the fields to be covariant also under
发表于 2025-3-23 18:55:10 | 显示全部楼层
发表于 2025-3-24 02:12:55 | 显示全部楼层
发表于 2025-3-24 05:05:56 | 显示全部楼层
发表于 2025-3-24 07:18:23 | 显示全部楼层
Anforderungen an das Energiemanagement, is obtained and general spectral properties of the Hamiltonian as a cluster operator are demonstrated. The quasi-particle spectrum in the strong coupling limit, the Efimov effect, the current and noncurrent bound states are also discussed.
发表于 2025-3-24 11:05:33 | 显示全部楼层
发表于 2025-3-24 17:48:45 | 显示全部楼层
发表于 2025-3-24 20:08:25 | 显示全部楼层
发表于 2025-3-24 23:45:57 | 显示全部楼层
Anforderungen an das Energiemanagement, is obtained and general spectral properties of the Hamiltonian as a cluster operator are demonstrated. The quasi-particle spectrum in the strong coupling limit, the Efimov effect, the current and noncurrent bound states are also discussed.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 00:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表