找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Applications of Number Theory to Numerical Analysis; Hua Loo Keng,Wang Yuan Book 1981 Springer-Verlag Berlin Heidelberg and Science Press.

[复制链接]
查看: 30771|回复: 44
发表于 2025-3-21 16:39:30 | 显示全部楼层 |阅读模式
期刊全称Applications of Number Theory to Numerical Analysis
影响因子2023Hua Loo Keng,Wang Yuan
视频video
图书封面Titlebook: Applications of Number Theory to Numerical Analysis;  Hua Loo Keng,Wang Yuan Book 1981 Springer-Verlag Berlin Heidelberg and Science Press.
影响因子Owing to the developments and applications of computer science, ma­ thematicians began to take a serious interest in the applications of number theory to numerical analysis about twenty years ago. The progress achieved has been both important practically as well as satisfactory from the theoretical view point. It‘or example, from the seventeenth century till now, a great deal of effort was made in developing methods for approximating single integrals and there were only a few works on multiple quadrature until the 1950‘s. But in the past twenty years, a number of new methods have been devised of which the number theoretic method is an effective one. The number theoretic method may be described as follows. We use num­ ber theory to construct a sequence of uniformly distributed sets in the s­ dimensional unit cube G , where s ~ 2. Then we use the sequence to s reduce a difficult analytic problem to an arithmetic problem which may be calculated by computer. For example, we may use the arithmetic mean of the values of integrand in a given uniformly distributed set of G to ap­ s proximate the definite integral over G such that the principal order of the s error term is shown to be of th
Pindex Book 1981
The information of publication is updating

书目名称Applications of Number Theory to Numerical Analysis影响因子(影响力)




书目名称Applications of Number Theory to Numerical Analysis影响因子(影响力)学科排名




书目名称Applications of Number Theory to Numerical Analysis网络公开度




书目名称Applications of Number Theory to Numerical Analysis网络公开度学科排名




书目名称Applications of Number Theory to Numerical Analysis被引频次




书目名称Applications of Number Theory to Numerical Analysis被引频次学科排名




书目名称Applications of Number Theory to Numerical Analysis年度引用




书目名称Applications of Number Theory to Numerical Analysis年度引用学科排名




书目名称Applications of Number Theory to Numerical Analysis读者反馈




书目名称Applications of Number Theory to Numerical Analysis读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:06:08 | 显示全部楼层
978-3-642-67831-8Springer-Verlag Berlin Heidelberg and Science Press. Beijing 1981
发表于 2025-3-22 01:44:36 | 显示全部楼层
发表于 2025-3-22 07:00:24 | 显示全部楼层
Ravindra H. Patil,Vijay L. Maheshwaribtained by . = . (. = 1, 2, ....) which is essentially the Jacobi-Perron algorithm (Cf. L. Bernstein [1]). It yields less precise results but the computations of . and ..(1 ≤ . ≤ .) are comparatively simple.
发表于 2025-3-22 09:56:30 | 显示全部楼层
Apekcha Bajpai,Bhavdish N. Johrifying 2 opposite sides of the unit square 0 ≤ . ≤ 1, 0 ≤ . ≤ 1. In general, . is obtained by identifying the 2. opposite surfaces of the s-dimensional unit cube, i.e., the points . and . are identified, where 1 ≤ . ≤ ..
发表于 2025-3-22 15:58:07 | 显示全部楼层
Recurrence Relations and Rational Approximation,btained by . = . (. = 1, 2, ....) which is essentially the Jacobi-Perron algorithm (Cf. L. Bernstein [1]). It yields less precise results but the computations of . and ..(1 ≤ . ≤ .) are comparatively simple.
发表于 2025-3-22 17:46:50 | 显示全部楼层
发表于 2025-3-22 21:56:51 | 显示全部楼层
Ravindra H. Patil,Vijay L. Maheshwaribtained by . = . (. = 1, 2, ....) which is essentially the Jacobi-Perron algorithm (Cf. L. Bernstein [1]). It yields less precise results but the computations of . and ..(1 ≤ . ≤ .) are comparatively simple.
发表于 2025-3-23 02:22:12 | 显示全部楼层
Apekcha Bajpai,Bhavdish N. Johrifying 2 opposite sides of the unit square 0 ≤ . ≤ 1, 0 ≤ . ≤ 1. In general, . is obtained by identifying the 2. opposite surfaces of the s-dimensional unit cube, i.e., the points . and . are identified, where 1 ≤ . ≤ ..
发表于 2025-3-23 08:20:13 | 显示全部楼层
Endophthalmitis in Clinical PracticeLet . denote the rational number field and . be an algebraic number of degree .. Then the algebraic number field . = .(.) is the field given by the polynomials in . of degree < . with rational coefficients.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 04:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表