找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Application of Machine Learning and Deep Learning Methods to Power System Problems; Morteza Nazari-Heris,Somayeh Asadi,Milad Sadat-Moh Boo

[复制链接]
楼主: Mottled
发表于 2025-3-25 07:17:12 | 显示全部楼层
https://doi.org/10.1007/978-3-030-77696-1Artificial neural networks (ANNs); Expert systems; Fuzzy systems; Evolutionary-based methods; Fault/Even
发表于 2025-3-25 09:06:20 | 显示全部楼层
978-3-030-77698-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-25 12:19:44 | 显示全部楼层
Book 2021ced by power system operators. Written by leading experts, the book will be an ideal resource for researchers and engineers working in the electrical power engineering and power system planning communities, as well as students in advanced graduate-level courses. 
发表于 2025-3-25 17:46:24 | 显示全部楼层
发表于 2025-3-25 23:59:25 | 显示全部楼层
1612-1287 Covers theoretical background and experimental analysisThis book evaluates the role of innovative machine learning and deep learning methods in dealing with power system issues, concentrating on recent developments and advances that improve planning, operation, and control of power systems. Cutting-
发表于 2025-3-26 03:28:09 | 显示全部楼层
发表于 2025-3-26 06:07:32 | 显示全部楼层
Sarah Meram,Theodore Falcon,James H. Paxtona huge historical data. The proposed feature selection is based on Kalman-Kohonen model for load forecasting and adaptive neuro-fuzzy inference system model for price forecasting. The obtained results for a distribution system confirmed the model’s effective performance.
发表于 2025-3-26 10:22:19 | 显示全部楼层
发表于 2025-3-26 13:21:21 | 显示全部楼层
The Adaptive Neuro-Fuzzy Inference System Model for Short-Term Load, Price, and Topology Forecastina huge historical data. The proposed feature selection is based on Kalman-Kohonen model for load forecasting and adaptive neuro-fuzzy inference system model for price forecasting. The obtained results for a distribution system confirmed the model’s effective performance.
发表于 2025-3-26 19:53:36 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 11:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表