找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Application of Integrable Systems to Phase Transitions; C.B. Wang Book 2013 Springer-Verlag Berlin Heidelberg 2013 Integrable system.Large

[复制链接]
楼主: 贪吃的人
发表于 2025-3-23 13:08:56 | 显示全部楼层
Introduction,he hypergeometric-type differential equations improve on some shortages of integrable systems to work on physical problems, such as the fact that a soliton system does not have a differential equation along the spectrum direction, and illustrate a new background to study the singularities of physica
发表于 2025-3-23 15:07:52 | 显示全部楼层
发表于 2025-3-23 19:44:34 | 显示全部楼层
Bifurcation Transitions and Expansions,rom the string equations. The density on multiple disjoint intervals for higher degree potential and the corresponding free energy are discussed in association with the Seiberg-Witten differential. In the symmetric cases for the quartic potential, the third-order phase transitions are explained with
发表于 2025-3-23 23:14:05 | 显示全部楼层
发表于 2025-3-24 06:12:19 | 显示全部楼层
Densities in Unitary Matrix Models, the orthogonal polynomials on the unit circle. The integrable systems and string equation discussed in this chapter provide a structure for finding the generalized density models and parameter relations that will be used as the mathematical foundation to investigate the transition problems discusse
发表于 2025-3-24 07:51:03 | 显示全部楼层
发表于 2025-3-24 12:37:01 | 显示全部楼层
发表于 2025-3-24 16:58:05 | 显示全部楼层
theory. The formulations and results will benefit researchers and students in the fields of phase transitions, integrable systems, matrix models and Seiberg-Witten theory..978-3-642-44024-3978-3-642-38565-0
发表于 2025-3-24 23:04:10 | 显示全部楼层
发表于 2025-3-25 01:11:33 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 07:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表