找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Android Malware Detection using Machine Learning; Data-Driven Fingerpr ElMouatez Billah Karbab,Mourad Debbabi,Djedjiga Mo Book 2021 The Edi

[复制链接]
楼主: HAND
发表于 2025-3-25 06:06:07 | 显示全部楼层
https://doi.org/10.1007/978-3-540-76376-5ses. The state-of-the-art solutions, such as Chen et al., (Stormdroid: A streaminglized machine learning-based system for detecting android malware, in . (2016), pp. 377–388), Kharraz et al. (UNVEIL: A large-scale, automated approach to detecting ransomware, in . (2016), pp. 757–772) and Sgandurra e
发表于 2025-3-25 07:37:37 | 显示全部楼层
发表于 2025-3-25 14:37:13 | 显示全部楼层
https://doi.org/10.1007/978-3-540-76376-5focuses on portable malware detection based on applying supervised machine learning on static analysis features in contrast to ., presented in Chap. ., in which we propose an unsupervised system based on static analysis features. While . provides a framework for malware clustering, aimed at market l
发表于 2025-3-25 19:03:39 | 显示全部楼层
https://doi.org/10.1007/978-3-540-76376-5chniques by introducing code randomization during training; (2) adaptation to operating system and malware change overtime by introducing the use of confidence-based decisions to collect adaptation datasets overtime. In this context, we identify several limitations and gaps in the state-of-the-art A
发表于 2025-3-25 23:49:12 | 显示全部楼层
https://doi.org/10.1007/978-3-540-76376-5running on smart devices are nowadays ubiquitous due to their convenience. For instance, users can presently use apps as Google Pay service to purchase products online and to make payments in retail stores. However, the growth of the mobile market apps has increased the concerns about the security o
发表于 2025-3-26 03:15:41 | 显示全部楼层
https://doi.org/10.1007/978-3-030-74664-3Android; malware detection; Fingerprinting; mobile security; cybersecurity; machine Learning
发表于 2025-3-26 05:33:34 | 显示全部楼层
978-3-030-74666-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-26 10:00:26 | 显示全部楼层
Resilient and Adaptive Android Malware Fingerprinting and Detection,chniques by introducing code randomization during training; (2) adaptation to operating system and malware change overtime by introducing the use of confidence-based decisions to collect adaptation datasets overtime. In this context, we identify several limitations and gaps in the state-of-the-art Android malware detection solutions.
发表于 2025-3-26 13:40:37 | 显示全部楼层
发表于 2025-3-26 17:06:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 17:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表