找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Analytic Number Theory, Approximation Theory, and Special Functions; In Honor of Hari M. Gradimir V. Milovanović,Michael Th. Rassias Book

[复制链接]
楼主: 迅速
发表于 2025-3-25 03:27:20 | 显示全部楼层
发表于 2025-3-25 09:11:29 | 显示全部楼层
The Mean Values of the Riemann Zeta-Function on the Critical LineIn this overview we give a detailed discussion of power moments of .(.), when . lies on the “critical line” .. The survey includes early results, the mean square and mean fourth power, higher moments, conditional results and some open problems.
发表于 2025-3-25 13:42:15 | 显示全部楼层
Explicit Bounds Concerning Non-trivial Zeros of the Riemann Zeta FunctionIn this paper, we get explicit upper and lower bounds for .., where . are consecutive ordinates of non-trivial zeros . of the Riemann zeta function. Meanwhile, we obtain the asymptotic relation . as . → ..
发表于 2025-3-25 19:21:11 | 显示全部楼层
Identities for Reciprocal BinomialsEuler’s results related to the sum of the ratios of harmonic numbers and binomial coefficients are investigated in this paper. We give a particular example involving quartic binomial coefficients.
发表于 2025-3-25 22:06:24 | 显示全部楼层
A Note on ,-Stirling NumbersThe .-Stirling numbers of both kinds are specializations of the complete or elementary symmetric functions. In this note, we use this fact to prove that the .-Stirling numbers can be expressed in terms of the .-binomial coefficients and vice versa.
发表于 2025-3-26 03:17:51 | 显示全部楼层
A Survey on Cauchy–Bunyakovsky–Schwarz Inequality for Power SeriesIn this paper, we present a survey of some recent results for the celebrated Cauchy–Bunyakovsky–Schwarz inequality for functions defined by power series with nonnegative coefficients. Particular examples for fundamental functions of interest are presented. Applications for some special functions are given as well.
发表于 2025-3-26 04:22:56 | 显示全部楼层
发表于 2025-3-26 08:52:12 | 显示全部楼层
发表于 2025-3-26 16:21:18 | 显示全部楼层
https://doi.org/10.1007/978-1-4939-0258-3Analytic Number Theory; Approximation theory; Riemann Hypothesis; additive number theory; hypergeometric
发表于 2025-3-26 20:05:26 | 显示全部楼层
978-1-4939-4538-2Springer Science+Business Media New York 2014
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 10:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表