找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Analysis on h-Harmonics and Dunkl Transforms; Feng Dai,Yuan Xu,Sergey Tikhonov Textbook 2015 Springer Basel 2015 Dunkl transforms.h-harmon

[复制链接]
查看: 46167|回复: 42
发表于 2025-3-21 16:25:51 | 显示全部楼层 |阅读模式
期刊全称Analysis on h-Harmonics and Dunkl Transforms
影响因子2023Feng Dai,Yuan Xu,Sergey Tikhonov
视频video
发行地址Focusses on the analysis side of h-harmonics and Dunkl transforms.Written in a concise yet informative style.No previous knowledge on reflection groups required
学科分类Advanced Courses in Mathematics - CRM Barcelona
图书封面Titlebook: Analysis on h-Harmonics and Dunkl Transforms;  Feng Dai,Yuan Xu,Sergey Tikhonov Textbook 2015 Springer Basel 2015 Dunkl transforms.h-harmon
影响因子​This book provides an introduction to h-harmonics and Dunkl transforms. These are extensions of the ordinary spherical harmonics and Fourier transforms, in which the usual Lebesgue measure is replaced by a reflection-invariant weighted measure. The authors’ focus is on the analysis side of both h-harmonics and Dunkl transforms.Graduate students and researchers working in approximation theory, harmonic analysis, and functional analysis will benefit from this book.
Pindex Textbook 2015
The information of publication is updating

书目名称Analysis on h-Harmonics and Dunkl Transforms影响因子(影响力)




书目名称Analysis on h-Harmonics and Dunkl Transforms影响因子(影响力)学科排名




书目名称Analysis on h-Harmonics and Dunkl Transforms网络公开度




书目名称Analysis on h-Harmonics and Dunkl Transforms网络公开度学科排名




书目名称Analysis on h-Harmonics and Dunkl Transforms被引频次




书目名称Analysis on h-Harmonics and Dunkl Transforms被引频次学科排名




书目名称Analysis on h-Harmonics and Dunkl Transforms年度引用




书目名称Analysis on h-Harmonics and Dunkl Transforms年度引用学科排名




书目名称Analysis on h-Harmonics and Dunkl Transforms读者反馈




书目名称Analysis on h-Harmonics and Dunkl Transforms读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:21:18 | 显示全部楼层
2297-0304 sis side of both h-harmonics and Dunkl transforms.Graduate students and researchers working in approximation theory, harmonic analysis, and functional analysis will benefit from this book.978-3-0348-0886-6978-3-0348-0887-3Series ISSN 2297-0304 Series E-ISSN 2297-0312
发表于 2025-3-22 01:13:53 | 显示全部楼层
发表于 2025-3-22 07:36:08 | 显示全部楼层
发表于 2025-3-22 12:05:54 | 显示全部楼层
https://doi.org/10.1007/3-7643-7674-0ernel of the spherical .-harmonics. This expression is an analog of the zonal harmonics, which suggests a definition of a convolution operator, defined in Section 3.3 and it helps us to study various summability methods for spherical .-harmonic expansions.
发表于 2025-3-22 15:03:12 | 显示全部楼层
Dunkl Operators Associated with Reflection Groups,mily of commuting first-order differential and difference operators associated with a reflection group, and are introduced in Section 2.2. The intertwining operator between the Dunkl operators and ordinary derivatives is discussed in Section 2.3.
发表于 2025-3-22 17:31:18 | 显示全部楼层
发表于 2025-3-23 00:40:52 | 显示全部楼层
https://doi.org/10.1007/3-7643-7674-0he classical spherical harmonics and the Fourier transform, in which the underlying rotation group is replaced by a finite reflection group. This chapter serves as an introduction, in which we briefly recall classical results on the spherical harmonics and the Fourier transform. Since all results ar
发表于 2025-3-23 02:37:55 | 显示全部楼层
https://doi.org/10.1007/3-7643-7674-0ghted spaces, we start with the definition of a family of weight functions invariant under a reflection group in Section 2.1. Dunkl operators are a family of commuting first-order differential and difference operators associated with a reflection group, and are introduced in Section 2.2. The intertw
发表于 2025-3-23 05:42:03 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 00:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表