找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Analysis of the Navier-Stokes Problem; Solution of a Millen Alexander G. Ramm Book 2023Latest edition The Editor(s) (if applicable) and The

[复制链接]
楼主: burgeon
发表于 2025-3-23 10:49:56 | 显示全部楼层
https://doi.org/10.1057/978-1-137-48769-8There is at most one solution in . of the NSP (.)–(.). To prove uniqueness of the solution to the NSP assume that . and . solve Eq. (.). Let .. We have (with . and . the convolution in .) . so . One has . By inequalities (.), (.), and (.), one gets from (.) the inequality: . Take the norm . of both parts of inequality (.) and get . Denote ..
发表于 2025-3-23 16:51:49 | 显示全部楼层
https://doi.org/10.1057/978-1-137-48769-8Let the assumption (1.15) p. 4 hold. In this chapter we prove that the NSP (3.1)–(3.3) implies the following.
发表于 2025-3-23 21:05:36 | 显示全部楼层
发表于 2025-3-24 02:05:15 | 显示全部楼层
Introduction,In this work a proof of the author’s basic results concerning the Navier-Stokes problem (NSP) is given.
发表于 2025-3-24 04:53:40 | 显示全部楼层
发表于 2025-3-24 10:18:13 | 显示全部楼层
,Statement of the Navier–Stokes Problem,The NSP consists of solving the following equations. .where ..
发表于 2025-3-24 13:06:45 | 显示全部楼层
发表于 2025-3-24 17:44:50 | 显示全部楼层
发表于 2025-3-24 20:20:59 | 显示全部楼层
发表于 2025-3-24 23:16:22 | 显示全部楼层
Logical Analysis of Our Proof,The NSP is formulated in Eq. (.).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 20:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表