找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Analysis of Images, Social Networks and Texts; 8th International Co Wil M. P. van der Aalst,Vladimir Batagelj,Elena Tu Conference proceedin

[复制链接]
查看: 43844|回复: 61
发表于 2025-3-21 16:37:31 | 显示全部楼层 |阅读模式
期刊全称Analysis of Images, Social Networks and Texts
期刊简称8th International Co
影响因子2023Wil M. P. van der Aalst,Vladimir Batagelj,Elena Tu
视频video
学科分类Communications in Computer and Information Science
图书封面Titlebook: Analysis of Images, Social Networks and Texts; 8th International Co Wil M. P. van der Aalst,Vladimir Batagelj,Elena Tu Conference proceedin
影响因子This book constitutes the proceedings of the 8th International Conference on Analysis of Images, Social Networks and Texts, AIST 2019, held in Kazan, Russia, in July 2019..The 24 full papers and 10 short papers were carefully reviewed and selected from 134 submissions (of which 21 papers were rejected without being reviewed). The papers are organized in topical sections on general topics of data analysis; natural language processing; social network analysis; analysis of images and video; optimization problems on graphs and network structures; analysis of dynamic behaviour through event data..
Pindex Conference proceedings 2020
The information of publication is updating

书目名称Analysis of Images, Social Networks and Texts影响因子(影响力)




书目名称Analysis of Images, Social Networks and Texts影响因子(影响力)学科排名




书目名称Analysis of Images, Social Networks and Texts网络公开度




书目名称Analysis of Images, Social Networks and Texts网络公开度学科排名




书目名称Analysis of Images, Social Networks and Texts被引频次




书目名称Analysis of Images, Social Networks and Texts被引频次学科排名




书目名称Analysis of Images, Social Networks and Texts年度引用




书目名称Analysis of Images, Social Networks and Texts年度引用学科排名




书目名称Analysis of Images, Social Networks and Texts读者反馈




书目名称Analysis of Images, Social Networks and Texts读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:19:54 | 显示全部楼层
发表于 2025-3-22 00:41:05 | 显示全部楼层
发表于 2025-3-22 07:24:43 | 显示全部楼层
An Algorithm for Constructing a Topological Skeleton for Semi-structured Spatial Data Based on Persie article. In the work, the main topological feature for analysis of object is a hole. The application of the developed algorithm to solve the actual problem of geoinformatics in the matching of spatial objects at different scales of map is shown. Comparison of topological skeletons at different tree depths is demonstrated.
发表于 2025-3-22 10:45:05 | 显示全部楼层
发表于 2025-3-22 15:08:11 | 显示全部楼层
发表于 2025-3-22 19:11:32 | 显示全部楼层
,Digitale Produktion: Bottom-up-Ökonomie,Being more expensive to compute than plain stochastic gradient descent, K-FAC allows the agent to converge a bit faster in terms of epochs compared to Adam on simple reinforcement learning tasks and tend to be more stable and less strict to hyperparameters selection. Considering the latest results w
发表于 2025-3-23 00:34:29 | 显示全部楼层
Der Mensch im Digitalzeitalter: Sapiens 2.0,ral methods for induction of decision trees and their ensembles based on evolutionary algorithms. The main difference of our approach is using real-valued vector representation of decision tree that allows to use a large number of different optimization algorithms, as well as optimize the whole tree
发表于 2025-3-23 05:13:31 | 显示全部楼层
Critical Perspectives on Digitising Africae article. In the work, the main topological feature for analysis of object is a hole. The application of the developed algorithm to solve the actual problem of geoinformatics in the matching of spatial objects at different scales of map is shown. Comparison of topological skeletons at different tre
发表于 2025-3-23 06:39:16 | 显示全部楼层
Electronic Theses and Dissertationso validate our approach on a data about revenue of a large Russian restaurant chain. We pay special attention to solve two problems: data heterogeneity and a high number of correlated features. We describe methods for considering heterogeneity—observations weighting and estimating models on subsampl
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 03:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表