找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Analysis of Divergence; Control and Manageme William O. Bray,Časlav V. Stanojević Book 1999 Birkhäuser Boston 1999 Fourier transform.Sequen

[复制链接]
楼主: 无缘无故
发表于 2025-3-23 09:53:11 | 显示全部楼层
Applied and Numerical Harmonic Analysishttp://image.papertrans.cn/a/image/156350.jpg
发表于 2025-3-23 17:30:37 | 显示全部楼层
https://doi.org/10.1007/978-3-658-36634-6The Legendre functions.occurring in this paper are sometimes called modlfied Legendre functions, or Legendre functions on the cut. They are defined in [2, p.143, eq. (6)] as . for -1 < x < 1, where F is Gauss’s hypergeometric function and . and . are real or complex parameters. They satisfy the recurrence relation ..
发表于 2025-3-23 18:31:16 | 显示全部楼层
Schwerpunkt Business Model InnovationWe show that the results of Love and Hunter can be reformulated to obtain convergence results at the endpoints of the interval -1 ≤ x ≤ 1.
发表于 2025-3-23 23:46:53 | 显示全部楼层
发表于 2025-3-24 05:13:12 | 显示全部楼层
Digitalisierung & NachhaltigkeitWe find necessary and suficient conditions for the pointwise convergence of the radial eigenfunctions expansion of the p-dimensional Laplace operator in a ball, where we prescribe either Dirichlet, Neumann or Robin conditions on the boundary.
发表于 2025-3-24 07:00:13 | 显示全部楼层
发表于 2025-3-24 11:18:30 | 显示全部楼层
发表于 2025-3-24 17:12:07 | 显示全部楼层
Expansions in series of Legendre functionsThe Legendre functions.occurring in this paper are sometimes called modlfied Legendre functions, or Legendre functions on the cut. They are defined in [2, p.143, eq. (6)] as . for -1 < x < 1, where F is Gauss’s hypergeometric function and . and . are real or complex parameters. They satisfy the recurrence relation ..
发表于 2025-3-24 23:05:46 | 显示全部楼层
发表于 2025-3-25 02:25:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-6 13:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表