找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Analysis and Topology in Nonlinear Differential Equations; A Tribute to Bernhar Djairo G Figueiredo,João Marcos do Ó,Carlos Tomei Book 2014

[复制链接]
楼主: 和善
发表于 2025-3-30 09:48:51 | 显示全部楼层
,Multiplicity of Positive Solutions for an Obstacle Problem in ℝ,In this paper we establish the existence of two positive solutions for the obstacle problem . where f is a continuous function verifying some technical conditions and . is the convex set given by . with . having nontrivial positive part with compact support in .
发表于 2025-3-30 14:06:38 | 显示全部楼层
发表于 2025-3-30 19:48:14 | 显示全部楼层
发表于 2025-3-30 22:19:33 | 显示全部楼层
, Solutions in Some Borderline Cases of Elliptic Equations with Degenerate Coercivity,Abstract. We study a degenerate elliptic equation, proving existence results of distributional solutions in some borderline cases.
发表于 2025-3-31 02:08:09 | 显示全部楼层
发表于 2025-3-31 08:53:27 | 显示全部楼层
,Some Weighted Inequalities of Trudinger–Moser Type,We discuss some extensions of the Trudinger–Moser inequality in a special case of weighted Sobolev spaces
发表于 2025-3-31 13:05:10 | 显示全部楼层
发表于 2025-3-31 16:29:56 | 显示全部楼层
,On a Resonant Lane–Emden Problem,We study the asymptotic behavior, as q → p, of the positive solutions of the Lane–Emden problem . where . is a bounded and smooth domain . is the first eigenvalue of the p-Laplacian operator . We prove that any family of positive solutions of this problem converges in . to the function .
发表于 2025-3-31 17:33:42 | 显示全部楼层
,A Note on the Existence of a Positive Solution for a Non-autonomous Schrödinger–Poisson System,We consider the system . where 3 < p < 5 and the potentials . has finite limits as . By imposing some conditions on the decay rate of the potentials we obtain the existence of a ground state solution. In the proof we apply variational methods.
发表于 2025-4-1 01:11:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 17:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表