找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Analysis and Optimization of Systems: State and Frequency Domain Approaches for Infinite-Dimensional; Proceedings of the 1 R. F. Curtain,A.

[复制链接]
楼主: 萌芽的心
发表于 2025-3-28 18:34:42 | 显示全部楼层
https://doi.org/10.1007/978-3-030-19701-8zations, Parametrization of all stabilizing controllers for a given plant, Existence of finite-dimensional stabilizing compensators, Strong stabilization by finite-dimensional controllers, The internal model principle, PI-control of uncertain infinite-dimensional systems.
发表于 2025-3-28 22:43:24 | 显示全部楼层
Stabilization and regulation of infinite-dimensional systems using coprime factorizations,zations, Parametrization of all stabilizing controllers for a given plant, Existence of finite-dimensional stabilizing compensators, Strong stabilization by finite-dimensional controllers, The internal model principle, PI-control of uncertain infinite-dimensional systems.
发表于 2025-3-29 01:55:11 | 显示全部楼层
发表于 2025-3-29 06:29:19 | 显示全部楼层
Riccati equations arising from boundary and point control problems,iques and microlocal analysis) will be emphasized. The paper will highlight an interplay between semigroups or operator methods and P.D.E. techniques. This survey is an update of the recent Springer-Verlag volume [L-T. 13].
发表于 2025-3-29 10:55:36 | 显示全部楼层
发表于 2025-3-29 13:15:42 | 显示全部楼层
The nehari problem and optimal hankel norm approximation,
发表于 2025-3-29 16:37:58 | 显示全部楼层
发表于 2025-3-29 23:11:15 | 显示全部楼层
发表于 2025-3-30 03:22:26 | 显示全部楼层
发表于 2025-3-30 07:09:09 | 显示全部楼层
Simultaneous triangular-decoupling, disturbance-rejection and stabilization problem for infinite-di studied in the framework of geometric approach. Under certain assumptions, some sufficient conditions for the problem to be solvable are presented. Further, the simultaneous triangular-decoupling and disturbance-rejection problem with incomplete-state feedback is also studied, and under certain assumptions its solvability conditions are presented.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-18 04:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表