找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Undergraduate Primer in Algebraic Geometry; Ciro Ciliberto Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusi

[复制链接]
楼主: 有作用
发表于 2025-3-23 10:47:26 | 显示全部楼层
https://doi.org/10.1007/978-3-642-48825-2ery regular function ., the function . is regular on .. We will denote by .(., .) the set of all morphisms from . to .. It is clear that the identity is a morphism and the composition of two morphisms is a morphism.
发表于 2025-3-23 17:28:06 | 显示全部楼层
发表于 2025-3-23 19:58:54 | 显示全部楼层
https://doi.org/10.1007/978-3-7091-7849-2two projections . and .. Consider the subset . of . defined in the following way .. . is a closed subset of .. . is a closed subset of ., so it suffices to show that there is a closed subset . of . such that ..
发表于 2025-3-24 01:26:29 | 显示全部楼层
,Hilfsmittel für Druckerei und Färberei,Let . be a field that throughout the whole book will be assumed to be algebraically closed. This will be the . over which we will consider all the geometric objects we will construct in this book.
发表于 2025-3-24 02:30:39 | 显示全部楼层
,Hilfsmittel für Druckerei und Färberei,Let . be any, not necessarily algebraically closed, field. We will denote by . its algebraic closure. A system of algebraic equations .is said to be . if . in ..
发表于 2025-3-24 10:03:01 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-4169-6Let . be a subset of .. We will denote by . the ideal of . of all the polynomials . such that .. Then . is called the . of .. The ring . is called the . of .. Similarly, if . is a subset of . we define the . of . to be the homogeneous ideal . of . which is generated by all homogeneous polynomials . such that .. The ring . is called the . of ..
发表于 2025-3-24 11:04:24 | 显示全部楼层
发表于 2025-3-24 17:51:01 | 显示全部楼层
Schriftenreihe Neurologie‘ Neurology SeriesLet ., . be quasi-projective varieties. Let us denote by . the set of all pairs ., where . is a non-empty open subset of . and ..
发表于 2025-3-24 22:44:16 | 显示全部楼层
发表于 2025-3-25 01:18:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-4 08:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表