找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Isogeometric Approach to Beam Structures; Bridging the Classic Buntara S. Gan Book 2018 Springer International Publishing AG 2018 Beam e

[复制链接]
楼主: 女性
发表于 2025-3-27 00:33:09 | 显示全部楼层
发表于 2025-3-27 01:48:34 | 显示全部楼层
Condensation Method,om common beam element could ease practitioners to adopt. This new condensation method is discussed in detail and provided by MATLAB function list. The condensation method is applied to the same examples of the beam by using NURBS Chap. . to show its effectiveness.
发表于 2025-3-27 06:31:37 | 显示全部楼层
Book 2018geometrical data into the conventional FE beam element codes. The book proposes a new reduction method where the beam element can be treated as under the conventional beam element theory that has only two nodes at both ends..
发表于 2025-3-27 12:25:55 | 显示全部楼层
which the beam element can be treated as a conventional beam.This book proposes a novel, original condensation method to beam formulation based on the isogeometric approach to reducing the degrees of freedom to conventional two-node beam elements. In this volume, the author defines the Buntara Conde
发表于 2025-3-27 16:40:33 | 显示全部楼层
https://doi.org/10.1007/978-3-642-51407-4neral curved beam element where the integration must be done numerically. To stick with the most basic concepts of beam element formulation using numerical integration, we will focus our description on a one-dimensional integration using the Gauss-Legendre quadrature method.
发表于 2025-3-27 17:53:40 | 显示全部楼层
https://doi.org/10.1007/978-3-642-51407-4using shape functions, are described in detail. In constructing the beam element formulations, the shape functions which are derived from the homogeneous governing equations lead to high-accuracy beam analyses. The theories discussed and derived herewith will be used in the subsequent chapters when we deal with the Isogeometric approach to beams.
发表于 2025-3-27 23:37:38 | 显示全部楼层
发表于 2025-3-28 04:39:15 | 显示全部楼层
发表于 2025-3-28 06:49:21 | 显示全部楼层
10楼
发表于 2025-3-28 12:00:43 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 00:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表