找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Irregular Mind; Szemerédi is 70 Imre Bárány,József Solymosi,Gábor Sági Book 2010 János Bolyai Mathematical Society and Springer-Verlag 2

[复制链接]
楼主: CLOG
发表于 2025-3-23 09:46:39 | 显示全部楼层
,Dirac-Type Questions For Hypergraphs — A Survey (Or More Problems For Endre To Solve),) in an n-vertex graph G is at least n/2 then G contains a Hamiltonian cycle. In 1999, Katona and Kierstead initiated a new stream of research devoted to studying similar questions for hypergraphs, and subsequently, for perfect matchings. A pivotal role in achieving some of the most important result
发表于 2025-3-23 15:44:26 | 显示全部楼层
Quasirandom Multitype Graphs,these properties a graph will share many other properties with suitably defined random graphs. This very general idea applies to many other structures, but here we restrict ourselves to graphs, without direction, loops, or multiple edges.
发表于 2025-3-23 21:47:53 | 显示全部楼层
发表于 2025-3-24 02:13:50 | 显示全部楼层
An Irregular Mind978-3-642-14444-8Series ISSN 1217-4696 Series E-ISSN 2947-9460
发表于 2025-3-24 05:19:40 | 显示全部楼层
发表于 2025-3-24 07:47:22 | 显示全部楼层
Nina Berding,Wolf-D. Bukow,Karin Cudakove every curve in B and that there are m pairs of curves, one from A and the other from 13, that are tangent to each other. Then the number of proper crossings among the members of AUB is at least (1/2 —o(l))mlnm. This bound is almost tight.
发表于 2025-3-24 14:03:28 | 显示全部楼层
Dhaka: Die Natur des Städtischenathematics and theoretical computer science is a jewel for online problems for partially ordered sets: the fact that h(h + l)/2 antichains are required for an online antichain partition of a poset of height h.
发表于 2025-3-24 18:22:35 | 显示全部楼层
发表于 2025-3-24 22:29:37 | 显示全部楼层
发表于 2025-3-24 23:50:55 | 显示全部楼层
https://doi.org/10.1007/978-3-642-95018-6 known results related to property testing, sublinear expanders, Ramsey numbers and FO model checking. All this is done under the same umbrella of nowhere dense and bounded expansion classes in many of their incarnations. We concentrate on extremal (mostly graph theory) results leaving algorithmic and structural aspects to other occasions.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 21:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表