找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Invitation to Unbounded Representations of ∗-Algebras on Hilbert Space; Konrad Schmüdgen Textbook 2020 The Editor(s) (if applicable) an

[复制链接]
楼主: rupture
发表于 2025-3-23 09:43:29 | 显示全部楼层
https://doi.org/10.1007/978-3-642-94331-7-seminorm. If this .-algebra of bounded elements coincides with ., then . is called Archimedean. In this case each .-positive .- representation of . acts by bounded operators and the corresponding .-seminorm can be characterized in terms of the .-positive representations. Two abstract Stellensätze f
发表于 2025-3-23 17:47:06 | 显示全部楼层
https://doi.org/10.1007/978-3-642-94331-7e representation theory of this relation is closely linked to properties of the dynamical system defined by the function F. It is shown that finite-dimensional irreducible representations correspond to cycles of the dynamical system. Infinite-dimensional irreducible representations are classified in
发表于 2025-3-23 20:57:08 | 显示全部楼层
https://doi.org/10.1007/978-3-642-48579-4onal expectation which allows one to define induced representations. We develop this theory in detail for representations that are induced from hermitian characters of commutative .-subalgebras. The Bargmann–Fock representation of the Weyl algebra is obtained in this manner.
发表于 2025-3-24 00:56:12 | 显示全部楼层
发表于 2025-3-24 04:52:14 | 显示全部楼层
发表于 2025-3-24 06:51:18 | 显示全部楼层
发表于 2025-3-24 10:43:46 | 显示全部楼层
发表于 2025-3-24 15:53:20 | 显示全部楼层
发表于 2025-3-24 22:15:41 | 显示全部楼层
Induced ,-Representations,onal expectation which allows one to define induced representations. We develop this theory in detail for representations that are induced from hermitian characters of commutative .-subalgebras. The Bargmann–Fock representation of the Weyl algebra is obtained in this manner.
发表于 2025-3-25 02:54:32 | 显示全部楼层
Well-Behaved Representations, this chapter we develop three general methods (group graded .-algebras, fraction algebras, compatible pairs) and apply them to the representations of the Weyl algebra and enveloping algebras of finite-dimensional Lie algebras.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 15:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表