找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Invitation to Mathematical Logic; David Marker Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license t

[复制链接]
楼主: Indigent
发表于 2025-3-23 09:56:10 | 显示全部楼层
Der Rundfunk und der Weltfunkvertrag,The ultraproduct construction is introduced and used to give an alternative proof of the Compactness Theorem.
发表于 2025-3-23 14:28:37 | 显示全部楼层
Die Londoner Funkkonferenz 1912,A test for eliminating quantifiers is given and applied it to further study the model theory of algebraically closed fields.
发表于 2025-3-23 21:21:55 | 显示全部楼层
发表于 2025-3-23 23:35:13 | 显示全部楼层
发表于 2025-3-24 03:54:04 | 显示全部楼层
https://doi.org/10.1007/978-3-642-10271-4Turing’s universal machine is constructed and used to prove the undecidability of the Halting Problem and the undecidability of validity in first-order logic. We include a brief discussion of the Recursion Theorem.
发表于 2025-3-24 09:07:46 | 显示全部楼层
https://doi.org/10.1007/978-3-642-10271-4We introduce the computably enumerable sets and the arithmetic sets and show that the form a hierarchy. These results, and the existence of computably inseparable computably enumerably sets, will be used in our approach to the Incompleteness Theorem. We briefly study Kolmogorov randomness as another avatar of incompleteness phenomena.
发表于 2025-3-24 12:11:49 | 显示全部楼层
发表于 2025-3-24 15:41:01 | 显示全部楼层
https://doi.org/10.1007/978-3-642-10271-4Gödel’s Incompleteness Theorems are proved. We show that the sets definable in the natural numbers are exactly the arithmetic sets. The Arithmetized Completeness Theorem is used to give an alternative proof of the Second Incompleteness Theorem.
发表于 2025-3-24 19:55:06 | 显示全部楼层
发表于 2025-3-25 00:47:12 | 显示全部楼层
,Fünfter Teil: Thesen der Arbeit,We bound the growth rate of computable functions provably total in Peano Arithmetic. This is applied to show the independence of Goodstein’s number theoretic result. Proof theoretic methods, including cut-elimination, are introduced to prove the main result.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 17:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表