找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introductory Guide to Computational Methods for the Solution of Physics Problems; With Emphasis on Spe George Rawitscher,Victo dos Santo

[复制链接]
楼主: MASS
发表于 2025-3-23 10:55:23 | 显示全部楼层
https://doi.org/10.1007/978-3-322-98672-6er-Cromer method. The emphasis here is on algorithm errors, and an explanation of what is meant by the “order” of the error. We show that the Euler method introduces an error of order 2, denoted as . while the latter presents errors of order .. We finish the chapter by applying the methods to two im
发表于 2025-3-23 15:36:16 | 显示全部楼层
发表于 2025-3-23 21:49:43 | 显示全部楼层
发表于 2025-3-23 23:53:49 | 显示全部楼层
https://doi.org/10.1007/978-3-642-71903-5pressions in terms of the powers of the variable ., where ., and the mesh points required for the Gauss–Chebyshev integration expression described in Chap. .. We also point out the advantage of the expansion into this set of functions, as their truncation error is spread uniformly across the . inter
发表于 2025-3-24 05:15:08 | 显示全部楼层
https://doi.org/10.1007/978-3-662-41281-7the advantages of working with the integral equation, called Lippmann–Schwinger (L–S). We show how a numerical solution of such an equation can be obtained by expanding the wave function in terms of Chebyshev polynomials, and give an example for a simple one-dimensional Schrödinger equation. This me
发表于 2025-3-24 07:08:22 | 显示全部楼层
发表于 2025-3-24 12:43:14 | 显示全部楼层
Die Bestimmung der Umtriebszeitction is described in an efficient way by its amplitude .(.) and the wave phase .. Since each of these quantities vary monotonically and slowly with distance, they are much easier to calculate than the wave function itself. An iterative method to solve the non-linear equation for . is described, and
发表于 2025-3-24 15:47:40 | 显示全部楼层
发表于 2025-3-24 19:22:11 | 显示全部楼层
发表于 2025-3-25 01:15:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 12:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表