找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introductory Course in Lebesgue Spaces; Rene Erlin Castillo,Humberto Rafeiro Textbook 2016 Springer International Publishing Switzerlan

[复制链接]
楼主: 补给线
发表于 2025-3-23 11:02:24 | 显示全部楼层
https://doi.org/10.1007/978-3-322-96237-9behavior or locality; for example, a function . and its translation are the same in terms of their distributions. Based on the distribution function we study the nonincreasing rearrangement and establish its basic properties. We obtain sub-additive and sub-multiplicative type inequalities for the de
发表于 2025-3-23 16:06:58 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-7829-6aces which will be studied in a subsequent chapter. In the framework of weak Lebesgue spaces we will study, among other topics, embedding results, convergence in measure, interpolation results, and the question of normability of the space. We also show a Fatou type lemma for weak Lebesgue spaces as
发表于 2025-3-23 21:39:34 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-7829-6aces which depend now on two parameters. Our first task therefore will be to define the Lorentz spaces and derive some of their properties, like completeness, separability, normability, duality among other topics, e.g., Hölder’s type inequality, Lorentz sequence spaces, and the spaces .exp and .log.
发表于 2025-3-23 23:17:37 | 显示全部楼层
Aufgabenstellung und Begriffsbestimmungen,., in the modeling of electrorheological fluids, thermorheological fluids, in the study of image processing, in differential equations with nonstandard growth, among others. Thus, naturally, new fine scales of function spaces have been introduced, namely variable exponent spaces and grand spaces. In
发表于 2025-3-24 06:15:26 | 显示全部楼层
发表于 2025-3-24 08:27:44 | 显示全部楼层
发表于 2025-3-24 11:00:47 | 显示全部楼层
发表于 2025-3-24 17:09:57 | 显示全部楼层
发表于 2025-3-24 23:05:01 | 显示全部楼层
发表于 2025-3-24 23:32:06 | 显示全部楼层
Lebesgue Spacesergence, uniform convexity, and the continuity of the translation operator are also studied. We also deal with weighted Lebesgue spaces and Lebesgue spaces with the exponent between 0 and 1. We give alternative proofs for the Hölder inequality based on Minkowski inequality and also study the Markov, Chebyshev, and Minkowski integral inequality.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 05:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表