找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to the Theory of Multipliers; Ronald Larsen Book 1971 Springer-Verlag Berlin · Heidelberg 1971 Koordinatentransformation.M

[复制链接]
楼主: quick-relievers
发表于 2025-3-23 10:29:43 | 显示全部楼层
An Introduction to the Theory of Multipliers978-3-642-65030-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
发表于 2025-3-23 16:07:44 | 显示全部楼层
发表于 2025-3-23 20:05:25 | 显示全部楼层
Die forstliche BestandesgründungOur purpose in this chapter is to present a development of much of the theory of multipliers for Banach algebras. It is neither exhaustive of the material nor is the development the most general one that could be made. Instead we have emphasized the problem of characterizing the multipliers of various abstract Banach algebras.
发表于 2025-3-24 01:22:42 | 显示全部楼层
The General Theory of Multipliers,Our purpose in this chapter is to present a development of much of the theory of multipliers for Banach algebras. It is neither exhaustive of the material nor is the development the most general one that could be made. Instead we have emphasized the problem of characterizing the multipliers of various abstract Banach algebras.
发表于 2025-3-24 02:36:38 | 显示全部楼层
The Multipliers for Commutative ,*-Algebras,s with the Banach algebra norm, b).c) .* . ≠ 0 if . ≠ 0 and d) <.,.> = <., .* .> for all ., ., .∈.. The standard example of an .*-algebra is the algebra .(.) for a compact group . with the usual convolution multiplication and scalar product. A general discussion of .*-algebras can be found in Loomis [1] and Naimark [1].
发表于 2025-3-24 10:21:56 | 显示全部楼层
发表于 2025-3-24 12:13:42 | 显示全部楼层
https://doi.org/10.1007/978-3-642-65030-7Koordinatentransformation; Microsoft Access; Multiplikator; Volume; character; commutative property; funct
发表于 2025-3-24 17:56:47 | 显示全部楼层
978-3-642-65032-1Springer-Verlag Berlin · Heidelberg 1971
发表于 2025-3-24 20:57:21 | 显示全部楼层
发表于 2025-3-25 01:04:04 | 显示全部楼层
Die forstliche Bestandesgründungs with the Banach algebra norm, b).c) .* . ≠ 0 if . ≠ 0 and d) <.,.> = <., .* .> for all ., ., .∈.. The standard example of an .*-algebra is the algebra .(.) for a compact group . with the usual convolution multiplication and scalar product. A general discussion of .*-algebras can be found in Loomis
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 15:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表