找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Volume I: Linearised Giovanni P. Galdi Textbook 19941st edition

[复制链接]
查看: 52057|回复: 41
发表于 2025-3-21 16:55:08 | 显示全部楼层 |阅读模式
期刊全称An Introduction to the Mathematical Theory of the Navier-Stokes Equations
期刊简称Volume I: Linearised
影响因子2023Giovanni P. Galdi
视频videohttp://file.papertrans.cn/156/155571/155571.mp4
学科分类Springer Tracts in Natural Philosophy
图书封面Titlebook: An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Volume I: Linearised Giovanni P. Galdi Textbook 19941st edition
影响因子Undoubtedly, the Navier-Stokes equations are of basic importance within the context of modern theory of partial differential equations. Although the range of their applicability to concrete problems has now been clearly recognised to be limited, as my dear friend and bright colleague K.R. Ra­ jagopal has showed me by several examples during the past six years, the mathematical questions that remain open are of such a fascinating and challenging nature that analysts and applied mathematicians cannot help being attracted by them and trying to contribute to their resolution. Thus, it is not a coincidence that over the past ten years more than seventy sig­ nificant research papers have appeared concerning the well-posedness of boundary and initial-boundary value problems. In this monograph I shall perform a systematic and up-to-date investiga­ tion of the fundamental properties of the Navier-Stokes equations, including existence, uniqueness, and regularity of solutions and, whenever the region of flow is unbounded, of their spatial asymptotic behavior. I shall omit other relevant topics like boundary layer theory, stability, bifurcation, de­ tailed analysis of the behavior for large ti
Pindex Textbook 19941st edition
The information of publication is updating

书目名称An Introduction to the Mathematical Theory of the Navier-Stokes Equations影响因子(影响力)




书目名称An Introduction to the Mathematical Theory of the Navier-Stokes Equations影响因子(影响力)学科排名




书目名称An Introduction to the Mathematical Theory of the Navier-Stokes Equations网络公开度




书目名称An Introduction to the Mathematical Theory of the Navier-Stokes Equations网络公开度学科排名




书目名称An Introduction to the Mathematical Theory of the Navier-Stokes Equations被引频次




书目名称An Introduction to the Mathematical Theory of the Navier-Stokes Equations被引频次学科排名




书目名称An Introduction to the Mathematical Theory of the Navier-Stokes Equations年度引用




书目名称An Introduction to the Mathematical Theory of the Navier-Stokes Equations年度引用学科排名




书目名称An Introduction to the Mathematical Theory of the Navier-Stokes Equations读者反馈




书目名称An Introduction to the Mathematical Theory of the Navier-Stokes Equations读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:48:01 | 显示全部楼层
0081-3877 the Navier-Stokes equations, including existence, uniqueness, and regularity of solutions and, whenever the region of flow is unbounded, of their spatial asymptotic behavior. I shall omit other relevant topics like boundary layer theory, stability, bifurcation, de­ tailed analysis of the behavior for large ti978-1-4757-3866-7Series ISSN 0081-3877
发表于 2025-3-22 01:46:36 | 显示全部楼层
发表于 2025-3-22 05:28:32 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-3866-7Navier-Stokes equation; dynamics; equation; fluid mechanics; function
发表于 2025-3-22 10:23:43 | 显示全部楼层
发表于 2025-3-22 15:05:14 | 显示全部楼层
Springer Tracts in Natural Philosophyhttp://image.papertrans.cn/a/image/155571.jpg
发表于 2025-3-22 19:28:40 | 显示全部楼层
发表于 2025-3-23 00:46:03 | 显示全部楼层
Steady-State Solutions of the Navier-Stokes Equations: Statement of the Problem and Open Questions,Let us consider a viscous, homogeneous fluid . moving within the region Ω of the three-dimensional space ℝ..
发表于 2025-3-23 01:55:36 | 显示全部楼层
Steady Stokes Flow in Bounded Domains, namely, that of a steady, indefinitely slow motion occurring in a bounded region Ω. The hypothesis of slow motion means that the ratio.of inertial to viscous forces is vanishingly small, so that we can disregard the nonlinear term into the full (steady) Navier-Stokes equations (I.0.3.).
发表于 2025-3-23 06:12:36 | 显示全部楼层
An Introduction to the Mathematical Theory of the Navier-Stokes Equations978-1-4757-3866-7Series ISSN 0081-3877
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-23 16:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表