找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to Wavelet Analysis; David F. Walnut Textbook 2004 Springer Science+Business Media New York 2004 Fourier analysis.Fourier

[复制链接]
楼主: 哑剧表演
发表于 2025-3-25 05:21:16 | 显示全部楼层
发表于 2025-3-25 10:51:06 | 显示全部楼层
Burnout – Herausforderung für die KircheRecall that computing the DWT of a signal ..(.) involves recursevely applying the filtering operators . and . as in the diagram in Figure 6.1, where each node on the tree corresponds to a sequence.
发表于 2025-3-25 12:10:51 | 显示全部楼层
发表于 2025-3-25 16:16:46 | 显示全部楼层
Fourier Series.. has period . > 0 .(. + .) = .(.) . ∊ .. . periodic.
发表于 2025-3-25 22:39:50 | 显示全部楼层
The Fourier TransformWe have seen that if .(.) is a function supported on an interval [−.] for some . > 0, then .(.) can be represented by a Fourier series as
发表于 2025-3-26 01:31:19 | 显示全部楼层
Signals and SystemsIn the previous chapter, we considered piecewise continuous functions with period 1 and showed that it is possible to represent such functions as an infinite superposition of exponentials ..(.) = .., . ∈ .. Each such exponential has period 1/. and hence completes . cycles per unit length (which we can interpret as measuring time).
发表于 2025-3-26 05:28:19 | 显示全部楼层
The Discrete Haar TransformRecall that a function .(.) defined on [0,1] has an expansion in terms of Haar functions as follows.
发表于 2025-3-26 09:50:46 | 显示全部楼层
Multiresolution AnalysisIn Section 5.5, we saw that if .(.) = ..(.) −.forms an orthonormal basis on ..
发表于 2025-3-26 12:48:26 | 显示全部楼层
Biorthogonal WaveletsIn Chapter 2, we considered the notion of orthonormal bases that have infinitely many elements and that can be used to represent arbitrary .. functions. In this section, we will consider nonorthogonal systems with many of the same properties. Such systems are referred to as ..
发表于 2025-3-26 19:07:55 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 18:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表