找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to Sequential Monte Carlo; Nicolas Chopin,Omiros Papaspiliopoulos Textbook 2020 Springer Nature Switzerland AG 2020 Partic

[复制链接]
楼主: peak-flow-meter
发表于 2025-3-23 12:46:02 | 显示全部楼层
发表于 2025-3-23 13:52:39 | 显示全部楼层
Textbook 2020pplication of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed..The book
发表于 2025-3-23 21:09:30 | 显示全部楼层
Finite State-Spaces and Hidden Markov Models,d backward recursions become sums over . terms, which can be computed exactly at a cost that is shown to be .. State-space models with a finite state-space model are usually called hidden Markov models. Applying the generic algorithm to their “bootstrap” Feynman-Kac formalisation yields an exact algorithm known as the forward-backward algorithm.
发表于 2025-3-23 22:32:31 | 显示全部楼层
Sequential Quasi-Monte Carlo,onte Carlo where random points are replaced with low-discrepancy sequences. The advantage is that QMC estimates usually converge faster than their Monte Carlo counterparts..This chapter explains how to derive QMC particle algorithms, also called SQMC (sequential quasi-Monte Carlo) algorithms.
发表于 2025-3-24 05:59:01 | 显示全部楼层
https://doi.org/10.1007/978-3-030-47845-2Particle filter; Sequential Monte Carlo; Bayesian inference; Sequential learning; State-space models; Hid
发表于 2025-3-24 06:53:57 | 显示全部楼层
发表于 2025-3-24 13:52:33 | 显示全部楼层
发表于 2025-3-24 18:17:02 | 显示全部楼层
发表于 2025-3-24 22:19:18 | 显示全部楼层
Nicolas Chopin,Omiros PapaspiliopoulosOffers a general and gentle introduction to all aspects of particle filtering: the algorithms, their uses in different areas, their computer implementation in Python and the supporting theory.Covers b
发表于 2025-3-24 23:39:58 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 10:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表