找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to Riemannian Geometry; With Applications to Leonor Godinho,José Natário Textbook 2014 Springer International Publishing Sw

[复制链接]
查看: 36645|回复: 38
发表于 2025-3-21 20:03:03 | 显示全部楼层 |阅读模式
期刊全称An Introduction to Riemannian Geometry
期刊简称With Applications to
影响因子2023Leonor Godinho,José Natário
视频video
发行地址Presents a self-contained treatment of Riemannian geometry and applications to mechanics and relativity in one book.Conveys nontrivial results in general relativity (such as the Hawking and Penrose si
学科分类Universitext
图书封面Titlebook: An Introduction to Riemannian Geometry; With Applications to Leonor Godinho,José Natário Textbook 2014 Springer International Publishing Sw
影响因子.Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity..The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects..The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making .An Introduction to Riemannian Geometry. ideal for self-study..
Pindex Textbook 2014
The information of publication is updating

书目名称An Introduction to Riemannian Geometry影响因子(影响力)




书目名称An Introduction to Riemannian Geometry影响因子(影响力)学科排名




书目名称An Introduction to Riemannian Geometry网络公开度




书目名称An Introduction to Riemannian Geometry网络公开度学科排名




书目名称An Introduction to Riemannian Geometry被引频次




书目名称An Introduction to Riemannian Geometry被引频次学科排名




书目名称An Introduction to Riemannian Geometry年度引用




书目名称An Introduction to Riemannian Geometry年度引用学科排名




书目名称An Introduction to Riemannian Geometry读者反馈




书目名称An Introduction to Riemannian Geometry读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:13:45 | 显示全部楼层
发表于 2025-3-22 02:59:23 | 显示全部楼层
发表于 2025-3-22 04:40:15 | 显示全部楼层
发表于 2025-3-22 11:10:40 | 显示全部楼层
发表于 2025-3-22 15:48:26 | 显示全部楼层
发表于 2025-3-22 17:09:55 | 显示全部楼层
发表于 2025-3-22 21:24:51 | 显示全部楼层
发表于 2025-3-23 02:30:51 | 显示全部楼层
Curvature,nt vector fields, the difference between the sum of the internal angles of a geodesic triangle and ., or the angle by which a vector is rotated when parallel-transported along a closed curve. This chapter addresses the various characterizations and properties of curvature.
发表于 2025-3-23 05:40:10 | 显示全部楼层
Geometric Mechanics,iggered by the need to explain a mismatch between the observed orbit of planet Uranus and its theoretical prediction. This chapter uses Riemannian geometry to give a geometric formulation of Newtonian mechanics.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 18:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表