找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to Riemann-Finsler Geometry; D. Bao,S.-S. Chern,Z. Shen Textbook 2000 Springer Science+Business Media New York 2000 Calc.D

[复制链接]
楼主: Concave
发表于 2025-3-25 07:18:08 | 显示全部楼层
https://doi.org/10.1007/978-3-658-14309-1In §3.9, we encountered the flag curvature. As the name suggests, this quantity (denoted .) involves a location . ϵ ., a flagpole ℓ:= with . ϵ ..., and a transverse edge . ϵ .... The precise formula is quite elegantly given by (3.9.3): ..
发表于 2025-3-25 09:17:04 | 显示全部楼层
https://doi.org/10.1007/978-3-8349-8493-7A .. on a manifold . is a family of inner products {..}.∈. such that the quantities . are smooth in local coordinates. The Finsler function .(.) of a Riemannian manifold has the characteristic structure ..
发表于 2025-3-25 15:12:38 | 显示全部楼层
发表于 2025-3-25 17:09:27 | 显示全部楼层
发表于 2025-3-25 21:48:21 | 显示全部楼层
Curvature and Schur’s LemmaThe curvature 2-forms of the Chern connection are ..
发表于 2025-3-26 00:37:41 | 显示全部楼层
发表于 2025-3-26 05:31:06 | 显示全部楼层
The Cartan—Hadamard Theorem and Rauch’s First TheoremIn §5.5, we estimated the growth of certain Jacobi fields using the first few terms of a power series. That was valid only for a short time interval. In the present section, we use a more delicate approach—known as a comparison argument. The resulting estimate holds for long time intervals.
发表于 2025-3-26 11:00:19 | 显示全部楼层
发表于 2025-3-26 15:48:35 | 显示全部楼层
发表于 2025-3-26 19:14:16 | 显示全部楼层
Constant Flag Curvature Spaces and Akbar-Zadeh’s TheoremIn §3.9, we encountered the flag curvature. As the name suggests, this quantity (denoted .) involves a location . ϵ ., a flagpole ℓ:= with . ϵ ..., and a transverse edge . ϵ .... The precise formula is quite elegantly given by (3.9.3): ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 21:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表