找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to Quantum Stochastic Calculus; K. R. Parthasarathy Book 1992 Springer Basel AG 1992 Brownian motion.Excel.Poisson process

[复制链接]
楼主: energy
发表于 2025-3-23 10:20:33 | 显示全部楼层
Observables and States in Tensor Products of Hilbert Spaces,l projections in a Hubert space ℋ. . = 1, 2,…, .. Such an attempt leads us to consider tensor products of Hilbert spaces. We shall present a somewhat statistically oriented approach to the definition of tensor products which is at the same time coordinate free in character. To this end we introduce the notion of a positive definite kernel.
发表于 2025-3-23 17:21:44 | 显示全部楼层
Events, Observables and States,ing the subatomic world of elementary particles where the laws of classical mechanics break down and the distinction between a particle and a wave becomes vague. These methods lead to a generalisation of classical probability which may be described as a study of observable quantities concerning any
发表于 2025-3-23 21:01:41 | 显示全部楼层
发表于 2025-3-24 00:46:10 | 显示全部楼层
,Stochastic Integration and Quantum Ito’s Formula,of the creation, conservation and annihilation operators in the boson Fock space Γ. (ℋ) over a Hilbert space ℋ. This includes, in particular, the Brownian motion and Poisson process. Since a well-developed theory of stochastic integration with respect to these classical processes exists, it is natur
发表于 2025-3-24 04:31:01 | 显示全部楼层
发表于 2025-3-24 10:01:27 | 显示全部楼层
,Stochastic Integration and Quantum Ito’s Formula,e of jumps is assumed more as a matter of mathematical convenience than a philosophical or conceptual necessity. We shall now examine how such a notion of time leads to a filtration and the definition of adapted processes.
发表于 2025-3-24 13:42:14 | 显示全部楼层
1017-0480 ion relations or, equivalently, the uncertainty principle..Quantum stochastic interpretation enables the possibility of seeing new relationships between fermion978-3-0348-9711-2978-3-0348-8641-3Series ISSN 1017-0480 Series E-ISSN 2296-4886
发表于 2025-3-24 16:23:27 | 显示全部楼层
发表于 2025-3-24 22:35:58 | 显示全部楼层
发表于 2025-3-25 00:49:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 07:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表