找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to Machine Learning; Miroslav Kubat Textbook 20172nd edition Springer International Publishing AG 2017 Bayesian classifier

[复制链接]
楼主: Inoculare
发表于 2025-3-23 13:27:28 | 显示全部楼层
发表于 2025-3-23 15:33:24 | 显示全部楼层
发表于 2025-3-23 19:58:22 | 显示全部楼层
发表于 2025-3-24 00:29:42 | 显示全部楼层
Textbook 20172nd editionmples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way
发表于 2025-3-24 05:37:47 | 显示全部楼层
发表于 2025-3-24 07:17:36 | 显示全部楼层
发表于 2025-3-24 12:05:08 | 显示全部楼层
发表于 2025-3-24 18:49:41 | 显示全部楼层
https://doi.org/10.1007/978-3-8350-9083-5at it takes to induce a useful classifier from data, and, conversely, why the outcome of a machine-learning undertaking so often disappoints. And so, even though this textbook does not want to be mathematical, it cannot help introducing at least the basic concepts of the ..
发表于 2025-3-24 21:40:15 | 显示全部楼层
发表于 2025-3-25 02:49:23 | 显示全部楼层
Die Unbeherrschtheit bei Platonge, offering diverse points of view that complement each other to the point where they may inspire innovative solutions. Something similar can be done in machine learning, too. A group of classifiers is created in a way that makes each of them somewhat different. When they vote about the recommended
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 23:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表