找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to Laplacian Spectral Distances and Kernels; Theory, Computation, Giuseppe Patanè Book 2017 Springer Nature Switzerland AG

[复制链接]
楼主: 契约
发表于 2025-3-23 10:44:57 | 显示全部楼层
https://doi.org/10.1007/978-3-642-91707-3 and shape analysis, as a generalization of the well-known biharmonic, diffusion, and wave distances. To support the reader in the selection of the most appropriate with respect to shape representation, computational resources, and target application, all the reviewed numerical schemes have been dis
发表于 2025-3-23 17:38:36 | 显示全部楼层
发表于 2025-3-23 20:06:56 | 显示全部楼层
Durchführung des TrockenvorgangesWe review the isotropic and anisotropic Laplace-Beltrami operator and introduce a unified representation of the corresponding Laplacian matrix for surfaces and volumes. Additional results have been presented in [Sor06, Tau99, KG00, ZvKD07].
发表于 2025-3-23 23:16:00 | 显示全部楼层
发表于 2025-3-24 04:43:55 | 显示全部楼层
Betriebsregelung bei TrockenanlagenIn geometry processing and shape analysis, several applications (e.g., surface remeshing, skeletonization, segmentation, comparison) have been addressed through the definition of shape descriptors and distances. Shape kernels, distances, and descriptors can be defined on 3D shapes by applying:
发表于 2025-3-24 09:19:43 | 显示全部楼层
发表于 2025-3-24 12:27:32 | 显示全部楼层
发表于 2025-3-24 18:45:58 | 显示全部楼层
Heat and Wave Equations,We introduce the heat (Sec. 2.1) and wave (Sec. 2.2) equations; then, we discuss their discretization (Sec. 2.3), the selection of the time scale, and the computation of their solution (Sec. 2.4). Finally (Sec. 2.5), we compare different methods for the computation of the solution to the heat equation.
发表于 2025-3-24 19:54:14 | 显示全部楼层
Laplacian Spectral Distances,In geometry processing and shape analysis, several applications (e.g., surface remeshing, skeletonization, segmentation, comparison) have been addressed through the definition of shape descriptors and distances. Shape kernels, distances, and descriptors can be defined on 3D shapes by applying:
发表于 2025-3-25 00:58:17 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 12:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表