找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to Incidence Geometry; Bart De Bruyn Book 2016 Springer International Publishing Switzerland 2016 projective spaces.incide

[复制链接]
楼主: 口语
发表于 2025-3-25 04:55:41 | 显示全部楼层
发表于 2025-3-25 10:41:34 | 显示全部楼层
Die Thermodynamik der Dampfmaschinenties of these geometries and describe several families. Dual polar spaces are examples of near polygons. In this chapter we also prove a result, essentially due to Peter Cameron, which characterizes dual polar spaces as those near polygons that satisfy certain specific properties.
发表于 2025-3-25 12:38:31 | 显示全部楼层
https://doi.org/10.1007/978-3-642-51887-4f Steiner triple systems. Design theory is however much broader than this. The reader who also wants to learn about other topics might consult other handbooks on design theory like [2, 87, 97, 135]. An extensive treatment of design theory can be found in the books [11, 12, 44].
发表于 2025-3-25 17:43:37 | 显示全部楼层
发表于 2025-3-25 23:52:26 | 显示全部楼层
,Zitierte und weiterführende Literatur,In this chapter, we discuss the basic notions and results from the theory of strongly regular and distance-regular graphs. Emphasis will be on those results that will have implications to the study of point-line geometries. A more extensive treatment of these families of graphs can be found in the books [6, 25, 69, 70].
发表于 2025-3-26 02:27:27 | 显示全部楼层
,Zitierte und weiterführende Literatur,There is an impressive literature about (substructures of) projective spaces, see e.g. [81–83]. This chapter is devoted to the study of some topics of this extensive research field.
发表于 2025-3-26 06:22:21 | 显示全部楼层
发表于 2025-3-26 10:49:28 | 显示全部楼层
https://doi.org/10.1007/978-3-662-33097-5In “classical polar geometry”, two families of mathematical objects were studied: the collection of subspaces of a Desarguesian projective space that are totally isotropic with respect to a given polarity; the collection of subspaces of a projective space over a field that are contained in a given nonsingular quadric.
发表于 2025-3-26 14:40:18 | 显示全部楼层
发表于 2025-3-26 20:36:42 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 02:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表