找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to Frames and Riesz Bases; Ole Christensen Textbook 2016Latest edition Springer International Publishing Switzerland 2016

[复制链接]
楼主: 监督
发表于 2025-3-26 23:58:16 | 显示全部楼层
发表于 2025-3-27 04:43:29 | 显示全部楼层
发表于 2025-3-27 08:08:11 | 显示全部楼层
发表于 2025-3-27 12:16:57 | 显示全部楼层
Die Technik der Blutgruppenuntersuchung,The previous chapters have concentrated on general frame theory. We have only seen a few concrete frames, and most of them were constructed via manipulations on an orthonormal basis for an arbitrary separable Hilbert space. An advantage of this approach is that we obtain universal constructions, valid in all Hilbert spaces.
发表于 2025-3-27 14:31:54 | 显示全部楼层
https://doi.org/10.1007/978-3-642-80492-2A fundamental question in wavelet analysis is what conditions we have to impose on a function . such that a given signal . can be expanded via translated and scaled versions of ., i.e., via functions
发表于 2025-3-27 18:24:50 | 显示全部楼层
,Technik und Phänomenologie der Hypnose,In this chapter we consider .,i.e., wavelet systems for . with scaling parameter . = 2 and translation parameter . = 1. We will usually denote the resulting wavelet systems . by . or . Recall that bases of this type were considered already in Section .
发表于 2025-3-28 01:05:41 | 显示全部楼层
Schwachsinnig oder schwer erziehbar?,The introduction of multiresolution analysis by Mallat and Meyer was the beginning of a new era; the short descriptions in Section . and Section . only give a glimpse of the research activity based on this new tool, aiming at construction of orthonormal bases .
发表于 2025-3-28 04:43:52 | 显示全部楼层
Die Technik der IndividualpsychologieFrame multiresolution analysis is just one way to construct wavelet frames via multiscale techniques. We already mentioned in Section . that the conditions can be weakened further, and the purpose of this chapter is to show how one can still construct frames.
发表于 2025-3-28 08:41:46 | 显示全部楼层
Bases and Their Limitations,The next chapters will deal with generalizations of the basis concept, so it is natural to ask why they are needed. Bases exist in all separable Hilbert spaces and in practically all Banach spaces of interest, so why do we have to search for generalizations?
发表于 2025-3-28 12:48:09 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 17:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表