找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to Algebraic Topology; Joseph J. Rotman Textbook 1988 Springer-Verlag New York Inc. 1988 Algebraic topology.CW complex.Fun

[复制链接]
查看: 52219|回复: 54
发表于 2025-3-21 16:31:23 | 显示全部楼层 |阅读模式
期刊全称An Introduction to Algebraic Topology
影响因子2023Joseph J. Rotman
视频video
学科分类Graduate Texts in Mathematics
图书封面Titlebook: An Introduction to Algebraic Topology;  Joseph J. Rotman Textbook 1988 Springer-Verlag New York Inc. 1988 Algebraic topology.CW complex.Fun
影响因子There is a canard that every textbook of algebraic topology either ends with the definition of the Klein bottle or is a personal communication to J. H. C. Whitehead. Of course, this is false, as a glance at the books of Hilton and Wylie, Maunder, Munkres, and Schubert reveals. Still, the canard does reflect some truth. Too often one finds too much generality and too little attention to details. There are two types of obstacle for the student learning algebraic topology. The first is the formidable array of new techniques (e. g. , most students know very little homological algebra); the second obstacle is that the basic defini­ tions have been so abstracted that their geometric or analytic origins have been obscured. I have tried to overcome these barriers. In the first instance, new definitions are introduced only when needed (e. g. , homology with coeffi­ cients and cohomology are deferred until after the Eilenberg-Steenrod axioms have been verified for the three homology theories we treat-singular, sim­ plicial, and cellular). Moreover, many exercises are given to help the reader assimilate material. In the second instance, important definitions are often accompanied by an inform
Pindex Textbook 1988
The information of publication is updating

书目名称An Introduction to Algebraic Topology影响因子(影响力)




书目名称An Introduction to Algebraic Topology影响因子(影响力)学科排名




书目名称An Introduction to Algebraic Topology网络公开度




书目名称An Introduction to Algebraic Topology网络公开度学科排名




书目名称An Introduction to Algebraic Topology被引频次




书目名称An Introduction to Algebraic Topology被引频次学科排名




书目名称An Introduction to Algebraic Topology年度引用




书目名称An Introduction to Algebraic Topology年度引用学科排名




书目名称An Introduction to Algebraic Topology读者反馈




书目名称An Introduction to Algebraic Topology读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:03:28 | 显示全部楼层
发表于 2025-3-22 00:47:48 | 显示全部楼层
An Introduction to Algebraic Topology978-1-4612-4576-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
发表于 2025-3-22 08:06:07 | 显示全部楼层
Jan Deth,Hans Rattinger,Edeltraud Rollerout topological spaces and continuous functions into problems about algebraic objects (e.g., groups, rings, vector spaces) and their homomorphisms; the method may succeed when the algebraic problem is easier than the original one. Before giving the appropriate setting, we illustrate how the method works.
发表于 2025-3-22 10:17:15 | 显示全部楼层
发表于 2025-3-22 15:09:31 | 显示全部楼层
Ellen Banzhaf,Sigrun Kabisch,Dieter Rinkor it will allow us to compare different functors; in particular, it will make precise the question whether two functors are isomorphic. The notion of an adjoint pair of functors, though intimately involved with naturality, will not be discussed until Chapter 11, where it will be used.
发表于 2025-3-22 19:37:13 | 显示全部楼层
https://doi.org/10.1007/978-3-662-66916-7s from S. into .. It is thus quite natural to consider (pointed) maps of . into a space .; their homotopy classes will be elements of the . .(., x.). This chapter gives the basic properties of the homotopy groups; in particular, it will be seen that they satisfy every Eilenberg-Steenrod axiom save excision.
发表于 2025-3-22 23:23:41 | 显示全部楼层
Graduate Texts in Mathematicshttp://image.papertrans.cn/a/image/155124.jpg
发表于 2025-3-23 04:27:43 | 显示全部楼层
https://doi.org/10.1007/978-1-4612-4576-6Algebraic topology; CW complex; Fundamental group; Homotopy; Homotopy group; Hurewicz theorem; Loop group;
发表于 2025-3-23 07:18:35 | 显示全部楼层
978-1-4612-8930-2Springer-Verlag New York Inc. 1988
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 07:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表