找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Algebraic Geometric Approach to Separation of Variables; Konrad Schöbel Book 2015 Springer Fachmedien Wiesbaden GmbH 2015 Killing tenso

[复制链接]
查看: 55635|回复: 35
发表于 2025-3-21 18:28:51 | 显示全部楼层 |阅读模式
期刊全称An Algebraic Geometric Approach to Separation of Variables
影响因子2023Konrad Schöbel
视频video
发行地址Includes supplementary material:
图书封面Titlebook: An Algebraic Geometric Approach to Separation of Variables;  Konrad Schöbel Book 2015 Springer Fachmedien Wiesbaden GmbH 2015 Killing tenso
影响因子.Konrad Schöbel aims to lay the foundations for a consequent algebraic geometric treatment of variable Separation, which is one of the oldest and most powerful methods to construct exact solutions for the fundamental equations in classical and quantum physics. The present work reveals a surprising algebraic geometric structure behind the famous list of separation coordinates, bringing together a great range of mathematics and mathematical physics, from the late 19th century theory of separation of variables to modern moduli space theory, Stasheff polytopes and operads..."I am particularly impressed by his mastery of a variety of techniques and his ability to show clearly how they interact to produce his results.”   (Jim Stasheff).
Pindex Book 2015
The information of publication is updating

书目名称An Algebraic Geometric Approach to Separation of Variables影响因子(影响力)




书目名称An Algebraic Geometric Approach to Separation of Variables影响因子(影响力)学科排名




书目名称An Algebraic Geometric Approach to Separation of Variables网络公开度




书目名称An Algebraic Geometric Approach to Separation of Variables网络公开度学科排名




书目名称An Algebraic Geometric Approach to Separation of Variables被引频次




书目名称An Algebraic Geometric Approach to Separation of Variables被引频次学科排名




书目名称An Algebraic Geometric Approach to Separation of Variables年度引用




书目名称An Algebraic Geometric Approach to Separation of Variables年度引用学科排名




书目名称An Algebraic Geometric Approach to Separation of Variables读者反馈




书目名称An Algebraic Geometric Approach to Separation of Variables读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:33:00 | 显示全部楼层
https://doi.org/10.1007/978-3-322-98921-5 a mere set, and gave a precise description of its topology. In this way we discovered that the theory of Deligne-Mumford-Knudsen moduli spaces and Stasheff polytopes provides the right framework for the classification and construction of all orthogonal separation coordinates on spheres.
发表于 2025-3-22 03:54:35 | 显示全部楼层
发表于 2025-3-22 04:55:49 | 显示全部楼层
Analyse der Klänge durch Mittönenhe strength of this ansatz lies in reducing a partial differential equation in . variables to . differential equations in only one variable, since the theory of ordinary (single-variable) differential equations is far better developed than the theory of partial (multi-variable) differential equations.
发表于 2025-3-22 12:48:06 | 显示全部楼层
发表于 2025-3-22 13:30:27 | 显示全部楼层
发表于 2025-3-22 19:02:13 | 显示全部楼层
The perspectives: applications and generalisations, a mere set, and gave a precise description of its topology. In this way we discovered that the theory of Deligne-Mumford-Knudsen moduli spaces and Stasheff polytopes provides the right framework for the classification and construction of all orthogonal separation coordinates on spheres.
发表于 2025-3-22 23:40:50 | 显示全部楼层
Book 2015, from the late 19th century theory of separation of variables to modern moduli space theory, Stasheff polytopes and operads..."I am particularly impressed by his mastery of a variety of techniques and his ability to show clearly how they interact to produce his results.”   (Jim Stasheff).
发表于 2025-3-23 02:21:47 | 显示全部楼层
发表于 2025-3-23 08:47:36 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 18:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表