找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithms, Fractals, and Dynamics; Y. Takahashi Book 1995 Plenum Press, New York 1995 Homeomorphism.Maxima.Variance.algorithms

[复制链接]
楼主: VEER
发表于 2025-3-26 22:56:29 | 显示全部楼层
发表于 2025-3-27 04:52:38 | 显示全部楼层
https://doi.org/10.1007/978-3-642-96014-7ch as recurrent set, nonwandering set and chain recurrent set. In many cases, the restriction of the map to such an invariant set possesses expansivity (or sensitive dependence on initial conditions, see Devaney [D] for the definition). For instance, from a result of Shub [Sh] we see that a diffeomo
发表于 2025-3-27 08:30:07 | 显示全部楼层
发表于 2025-3-27 11:21:39 | 显示全部楼层
From there to here or here to hereype which commutes only with its powers and has only trivial invariant .-algebras. Here we show that such examples can be obtained more directly using coding ideas. In fact, coding techniques yield results which do not seem obtainable via joinings, e.g. a complete classification of the factor algebr
发表于 2025-3-27 16:03:33 | 显示全部楼层
发表于 2025-3-27 19:17:26 | 显示全部楼层
https://doi.org/10.1007/978-3-658-08411-0et which has local translation and reflection invariance is a constant time change of the Brownian motion. On the other hand, Kumagai [Kum] introduced a class of Feller diffusions which is invariant under the operation of local rotation. These diffusions are called .-stream diffusions on the Sierpin
发表于 2025-3-27 23:07:27 | 显示全部楼层
发表于 2025-3-28 02:45:20 | 显示全部楼层
Rousseaus Gesellschaftsvertrag,simple continued fractions case and a generalized case). Relations between continued fractions and the geodesic flows on the modular surface are well-known. For example, Adler and Flatto [1] showed that the continued fraction transformation is obtained as a cross-section map of the geodesic flow. An
发表于 2025-3-28 06:51:10 | 显示全部楼层
发表于 2025-3-28 12:43:22 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 13:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表