找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithms in Invariant Theory; Bernd Sturmfels Book 19931st edition Springer-Verlag Vienna 1993 Algorithms.Invariant Theory.symbolic comp

[复制链接]
查看: 33035|回复: 35
发表于 2025-3-21 17:23:25 | 显示全部楼层 |阅读模式
期刊全称Algorithms in Invariant Theory
影响因子2023Bernd Sturmfels
视频video
学科分类Texts & Monographs in Symbolic Computation
图书封面Titlebook: Algorithms in Invariant Theory;  Bernd Sturmfels Book 19931st edition Springer-Verlag Vienna 1993 Algorithms.Invariant Theory.symbolic comp
影响因子J. Kung and G.-C. Rota, in their 1984 paper, write: “Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics”. The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this “classical and new” area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems.
Pindex Book 19931st edition
The information of publication is updating

书目名称Algorithms in Invariant Theory影响因子(影响力)




书目名称Algorithms in Invariant Theory影响因子(影响力)学科排名




书目名称Algorithms in Invariant Theory网络公开度




书目名称Algorithms in Invariant Theory网络公开度学科排名




书目名称Algorithms in Invariant Theory被引频次




书目名称Algorithms in Invariant Theory被引频次学科排名




书目名称Algorithms in Invariant Theory年度引用




书目名称Algorithms in Invariant Theory年度引用学科排名




书目名称Algorithms in Invariant Theory读者反馈




书目名称Algorithms in Invariant Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:48:43 | 显示全部楼层
Invariants of the general linear group,orithm, to be presented in Sect. 4.6, is derived from Hilbert (1893). We will discuss Hilbert’s algorithm from the point of view of Gröbner bases theory. This chapter is less elementary than the previous three. While most of the presentation is self-contained, familiarity with basic notions of commu
发表于 2025-3-22 03:37:06 | 显示全部楼层
发表于 2025-3-22 05:18:31 | 显示全部楼层
Problemstellung und Aufbau der Arbeit,ry. This chapter is less elementary than the previous three. While most of the presentation is self-contained, familiarity with basic notions of commutative algebra and representation theory will be assumed.
发表于 2025-3-22 10:45:37 | 显示全部楼层
Invariants of the general linear group,ry. This chapter is less elementary than the previous three. While most of the presentation is self-contained, familiarity with basic notions of commutative algebra and representation theory will be assumed.
发表于 2025-3-22 13:51:49 | 显示全部楼层
发表于 2025-3-22 20:39:07 | 显示全部楼层
发表于 2025-3-23 00:31:28 | 显示全部楼层
Book 19931st editione turn of the century, is once again at the forefront of mathematics”. The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main to
发表于 2025-3-23 03:42:37 | 显示全部楼层
发表于 2025-3-23 08:48:02 | 显示全部楼层
Invariant theory of finite groups,and the Cohen—Macaulay property (Sect. 2.3). In Sect. 2.4 we include a discussion of invariants of reflection groups, which is an important classical topic. Sections 2.6 and 2.7 are concerned with applications and special cases.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 03:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表