找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithms for Quadratic Matrix and Vector Equations; Federico Poloni Book 2011 The Editor(s) (if applicable) and The Author(s), under exc

[复制链接]
楼主: EVOKE
发表于 2025-3-23 10:36:00 | 显示全部楼层
发表于 2025-3-23 16:37:26 | 显示全部楼层
Bewertung der Versorgungsanrechte,[100]. The solution of interest is the minimal positive one, whose existence is proved in [100]. Note that for this equation . is an M-matrix [70]: in fact, . by Lemma 1.2.2 this is an M-matrix if and only if . which reduces to . in view of (11). According to the terminology in (5.2.2), the equation
发表于 2025-3-23 18:59:35 | 显示全部楼层
https://doi.org/10.1007/978-3-662-26395-2ible. Equations of type (9.1.1) were first introduced by A.I. Lur’e [119] in 1951 (see [13] for an historical overview) and play a fundamental role in systems theory, since properties like dissipativity of linear systems can be characterized via their solvability [2, 3, 4, 157]. This type of equatio
发表于 2025-3-23 23:36:33 | 显示全部楼层
发表于 2025-3-24 04:27:55 | 显示全部楼层
发表于 2025-3-24 07:47:17 | 显示全部楼层
,C. Mündliche Verhandlung vom 10. und,e definite . × . matrices. Chapter 11 mention the desirable properties listed by Ando, Li and Mathias [6]; however, these properties do not uniquely define a multivariate matrix geometric mean; thus several different definitions appeared in literature.
发表于 2025-3-24 14:12:08 | 显示全部楼层
,Beteiligungsverträge bei VC-Finanzierungen,w algorithms for their solution. The relationships between the different quadratic vector and matrix equations are partially exploited to give better algorithms and unified proofs. However, some details still cannot be embedded elegantly in the theory, and many algorithms for one equation of the cla
发表于 2025-3-24 17:49:26 | 显示全部楼层
Algorithms for Quadratic Matrix and Vector Equations978-88-7642-384-0Series ISSN 2239-1460 Series E-ISSN 2532-1668
发表于 2025-3-24 21:10:17 | 显示全部楼层
发表于 2025-3-25 00:54:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 22:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表