找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithms and Architectures for Parallel Processing; 21st International C Yongxuan Lai,Tian Wang,Aniello Castiglione Conference proceeding

[复制链接]
楼主: Nixon
发表于 2025-3-28 18:32:53 | 显示全部楼层
Versorgung und soziale Absicherung the spatio-temporal characteristic information of the one-stage detector. Experiments are carried out on MOT-17 and 2DMOT-15 which verifies that 43.27% and 63.7% improvement in tracking speed is obtained with a small accuracy compromise.
发表于 2025-3-28 19:15:22 | 显示全部楼层
https://doi.org/10.1007/978-3-642-30926-7he Spatio-temporal characteristics of nodes in different snapshots are extracted. Finally, the similarity between nodes is calculated according to the Spatio-temporal characteristics extracted by nodes, so we propose a Spatio-temporal topology routing algorithm in opportunistic networks based on the
发表于 2025-3-29 00:32:15 | 显示全部楼层
发表于 2025-3-29 05:50:57 | 显示全部楼层
https://doi.org/10.1007/978-3-662-06521-1s TCN-ATT, a temporal convolution network based on attention mechanism, to intelligent anomaly detection of wind turbine blades by combining dilation convolution, causal convolution, the skip connection of residual blocks and attention module. In this method, causal convolution and dilation convolut
发表于 2025-3-29 09:12:50 | 显示全部楼层
https://doi.org/10.1007/978-3-662-61172-2tensive experiments are conducted and the experimental results show that the proposed approach can derive more optimized mobile service composition with acceptable scalability compared with the traditional approach and other baselines.
发表于 2025-3-29 14:23:14 | 显示全部楼层
https://doi.org/10.1007/978-3-540-75983-6ther explore different parameter settings to optimize system performance and memory space efficiency. Finally, we implement the overall strategy as a memory library named UPM libs and integrate it into the SPDK framework. The official benchmarks, SPDK perf, are adopted to evaluate our solution. The
发表于 2025-3-29 17:28:13 | 显示全部楼层
发表于 2025-3-29 21:08:57 | 显示全部楼层
发表于 2025-3-30 02:14:39 | 显示全部楼层
CRFST-GCN: A Deeplearning Spatial-Temporal Frame to Predict Traffic Flowlution module captures the time-series relationship. Finally, it is verified on two real data sets that our proposed model effectively extracts similarities, and the results show that the model is 40 % more accurate than traditional methods during peak hours.
发表于 2025-3-30 05:46:33 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 18:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表