找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithmic Number Theory; 7th International Sy Florian Hess,Sebastian Pauli,Michael Pohst Conference proceedings 2006 Springer-Verlag Berl

[复制链接]
楼主: Enkephalin
发表于 2025-3-28 18:16:27 | 显示全部楼层
发表于 2025-3-28 19:42:19 | 显示全部楼层
发表于 2025-3-29 02:07:50 | 显示全部楼层
发表于 2025-3-29 06:59:19 | 显示全部楼层
https://doi.org/10.1007/978-3-8349-8700-6e present paper, the known lower bound 1.06 for . is raised to 1.218, and the known upper bound –1.009 for . is lowered to –1.229. In addition, the explicit upper bound of Pintz [14] on the smallest number for which the Mertens conjecture is false, is reduced from . to .. Finally, new numerical evid
发表于 2025-3-29 09:32:49 | 显示全部楼层
https://doi.org/10.1007/978-3-8349-8700-6nstein’s algorithm, which finds rigorous upper and lower bounds for Ψ(.,.). Bernstein’s original algorithm runs in time roughly linear in .. Our first, easy improvement runs in time roughly ... Then, assuming the Riemann Hypothesis, we show how to drastically improve this. In particular, if log. is
发表于 2025-3-29 14:31:23 | 显示全部楼层
发表于 2025-3-29 19:27:33 | 显示全部楼层
发表于 2025-3-29 23:27:19 | 显示全部楼层
发表于 2025-3-30 01:24:14 | 显示全部楼层
发表于 2025-3-30 04:34:39 | 显示全部楼层
https://doi.org/10.1007/978-3-662-06513-6han what was expected from the worst-case proved bounds, both in terms of the running time and the output quality. In this article, we investigate this puzzling statement by trying to model the average case of lattice reduction algorithms, starting with the celebrated Lenstra-Lenstra-Lovász algorith
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 12:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表