找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithmic Number Theory; 4th International Sy Wieb Bosma Conference proceedings 2000 Springer-Verlag Berlin Heidelberg 2000 Algorithmic N

[复制链接]
楼主: formation
发表于 2025-3-23 12:27:07 | 显示全部楼层
Construction of Secure , , Curves Using Modular Curvesusing such quotients of modular jacobians is that fast methods are known for finding their number of points over finite fields [6]. Our results extend ideas of M. Shimura [13] who used only the full modular jacobian instead of abelian quotients of it.
发表于 2025-3-23 15:37:52 | 显示全部楼层
On Powers as Sums of Two Cubesis for . = 4,5, thus proving that .. + .. = .. and .. + .. = .. have only trivial primitive solutions. In the process we meet a Jacobian of a curve that has more 6-torsion at any prime of good reduction than it has globally. Furthermore, some pointers are given to computational aids for applying Chabauty methods.
发表于 2025-3-23 20:00:39 | 显示全部楼层
发表于 2025-3-24 00:44:15 | 显示全部楼层
发表于 2025-3-24 06:03:51 | 显示全部楼层
发表于 2025-3-24 07:15:02 | 显示全部楼层
https://doi.org/10.1007/978-3-322-89382-6hese are combined with a birthday paradox algorithm to calculate the cardinality. Our methods are practical and we give actual results computed using our current implementation. The Jacobian groups we handle are larger than those previously reported in the literature.
发表于 2025-3-24 11:08:42 | 显示全部楼层
发表于 2025-3-24 15:06:13 | 显示全部楼层
发表于 2025-3-24 22:58:50 | 显示全部楼层
On Reconstruction of Algebraic Numbers roots of algebraic numbers. Secondly, we get an algorithm to factor polynomials over number fields which generalizes the Hensel-factoring method. Our method uses only integral LLL-reductions in contrast to the real LLL-reductions suggested by [6,8].
发表于 2025-3-25 01:39:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 01:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表