找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithm Theory -- SWAT 2012; 13th Scandinavian Sy Fedor V. Fomin,Petteri Kaski Conference proceedings 2012 Springer-Verlag Berlin Heidelb

[复制链接]
楼主: fundoplication
发表于 2025-3-25 05:41:11 | 显示全部楼层
Kasseler Edition Soziale ArbeitWe present an .(.. loglog./log..) time algorithm for all pairs shortest paths. This algorithm improves on the best previous result of .(.. (loglog.)./log.. ) time.
发表于 2025-3-25 08:10:38 | 显示全部楼层
发表于 2025-3-25 13:52:12 | 显示全部楼层
Algorithm Theory -- SWAT 2012978-3-642-31155-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-25 17:15:45 | 显示全部楼层
Fedor V. Fomin,Petteri KaskiState-of-the-art research.Fast-track conference proceedings.Unique visibility
发表于 2025-3-25 23:44:39 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/a/image/152836.jpg
发表于 2025-3-26 00:13:44 | 显示全部楼层
发表于 2025-3-26 08:23:39 | 显示全部楼层
发表于 2025-3-26 11:51:28 | 显示全部楼层
A Polynomial-Time Approximation Scheme for the Geometric Unique Coverage Problem on Unit Squares,wen (2009) before our work was 2. Our scheme can be generalized to the budgeted unique unit-square coverage problem, in which each point has a profit, each square has a cost, and we wish to maximize the total profit of the uniquely covered points under the condition that the total cost is at most a given bound.
发表于 2025-3-26 13:07:03 | 显示全部楼层
On Minimum Sum of Radii and Diameters Clustering,SR problem, we give an exact algorithm when the metric is the shortest-path metric of an unweighted graph and there cannot be any singleton clusters. For the MSD problem on the plane with Euclidean distances, we present a polynomial time approximation scheme.
发表于 2025-3-26 19:36:14 | 显示全部楼层
Faster Parameterized Algorithms for Deletion to Split Graphs,nels for the problem. More precisely,.In addition, we note that our algorithm for .  adds to the small number of subexponential parameterized algorithms not obtained through bidimensionality, and on general graphs.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 21:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表