找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic and Complex Geometry; In Honour of Klaus H Anne Frühbis-Krüger,Remke Nanne Kloosterman,Matthi Conference proceedings 2014 Springe

[复制链接]
楼主: 渗漏
发表于 2025-3-28 15:31:29 | 显示全部楼层
发表于 2025-3-28 21:59:54 | 显示全部楼层
Gonality of Algebraic Curves and Graphs,ponding graph is .-gonal and of Hurwitz type. Conversely the dual graph of a .-gonal stable curve is equivalent to a .-gonal graph of Hurwitz type. The hyperelliptic case is studied in detail. For . ≥ 1, we show that the dual graph of a (., .)-gonal stable is the underlying graph of a tropical curve
发表于 2025-3-28 23:30:03 | 显示全部楼层
Caustics of Plane Curves, Their Birationality and Matrix Projections,rce point . in the plane. Then we prove more generally a theorem for curves . in the projective space of 3 × 3 symmetric matrices .. For a general 3 × 1 vector . the projection to the plane given by . → . is birational on ., unless . is not a line and . is contained in a plane of the form ..
发表于 2025-3-29 03:46:57 | 显示全部楼层
发表于 2025-3-29 08:51:53 | 显示全部楼层
Hodge Numbers for the Cohomology of Calabi-Yau Type Local Systems,lds over a smooth, quasi-projective curve .. This generalizes previous work to the case of quasi-unipotent, but not necessarily unipotent, local monodromies at infinity. We give applications to Rohde’s families of Calabi-Yau 3-folds.
发表于 2025-3-29 13:36:26 | 显示全部楼层
Lagrangian Fibrations of Holomorphic-Symplectic Varieties of ,3,-Type,e. Let . be a nef line-bundle on ., such that the top power . vanishes and . is primitive. Assume that the two dimensional subspace ..(.) ..(.) of . intersects . trivially. We prove that the linear system of . is base point free and it induces a Lagrangian fibration on .. In particular, the line-bun
发表于 2025-3-29 17:53:25 | 显示全部楼层
发表于 2025-3-29 19:44:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-28 15:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表