找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic Topology - Homotopy and Homology; Robert M. Switzer Book 2002 Springer-Verlag GmbH Germany 2002 Algebraic topology.YellowSale200

[复制链接]
楼主: 挑染
发表于 2025-3-25 06:34:44 | 显示全部楼层
Covid-19: New Use of Therapeutics,n properties). If one is trying to show the non-existence of a map .: . → . with certain properties, then one wants to show that no homomorphism .*:.*(.) → .(.)with corresponding properties lies in im .. Thus it is desirable to obtain good limits on the extent of im ..
发表于 2025-3-25 11:22:25 | 显示全部楼层
Spectra,d (., .) ∈ → .’. Now in particular, if .* is a reduced cohomology theory satisfying the wedge axiom, then for every . ∈ . . is a cofunctor of the required form, and hence .(-) = [-; ., *] for some (En, *) ∈ .’. The cofunctors hn are not unrelated, however; we have natural equivalences
发表于 2025-3-25 14:03:12 | 显示全部楼层
发表于 2025-3-25 18:29:07 | 显示全部楼层
Cohomology Operations and Homology Cooperations,n properties). If one is trying to show the non-existence of a map .: . → . with certain properties, then one wants to show that no homomorphism .*:.*(.) → .(.)with corresponding properties lies in im .. Thus it is desirable to obtain good limits on the extent of im ..
发表于 2025-3-25 21:37:46 | 显示全部楼层
The Steenrod Algebra and its Dual,s precisely how Cartan did determine this algebra (see [28]) using some heavy guns from homological algebra. We shall take a different approach, however; we shall construct some specific cohomology operations—the Steenrod squares .—and show that they generate the algebra .(.(ℤ.); ℤ.). It will then n
发表于 2025-3-26 02:49:13 | 显示全部楼层
发表于 2025-3-26 08:23:57 | 显示全部楼层
Categories, Functors and Natural Transformations,etween objects will be considered; thus, for example, topological spaces and continuous functions, groups and homomorphisms, rings and ring homomorphisms. If we formalize this observation, we are led to the notion of a category.
发表于 2025-3-26 10:42:07 | 显示全部楼层
发表于 2025-3-26 14:33:59 | 显示全部楼层
发表于 2025-3-26 17:21:38 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 17:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表