找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic Theory of Generalized Inverses; Jianlong Chen,Xiaoxiang Zhang Book 2024 Science Press 2024 Algebraic equation.regularity.Moore—P

[复制链接]
楼主: incontestable
发表于 2025-3-23 11:41:18 | 显示全部楼层
Local Properties of IntersectionIn the previous chapters, we introduced Moore-Penrose inverses, group inverses and Drazin inverses, which are the most well-known generalized inverses. Although these generalized inverses coincide in some special cases, they behave rather differently in general.
发表于 2025-3-23 17:18:46 | 显示全部楼层
Deformations of Mathematical Structures IIFor any square complex matrix . with index 1, we know that the core inverse of . exists and it is equal to .. For a square complex matrix . of an arbitrary index, by noting that the Drazin inverse . always exists, it is natural to consider the generalized inverse . so as to generalize the core inverse.
发表于 2025-3-23 19:40:41 | 显示全部楼层
发表于 2025-3-23 22:19:54 | 显示全部楼层
发表于 2025-3-24 03:04:37 | 显示全部楼层
发表于 2025-3-24 08:06:10 | 显示全部楼层
发表于 2025-3-24 13:04:14 | 显示全部楼层
发表于 2025-3-24 17:47:34 | 显示全部楼层
Pseudo Core Inverses,For any square complex matrix . with index 1, we know that the core inverse of . exists and it is equal to .. For a square complex matrix . of an arbitrary index, by noting that the Drazin inverse . always exists, it is natural to consider the generalized inverse . so as to generalize the core inverse.
发表于 2025-3-24 21:53:38 | 显示全部楼层
https://doi.org/10.1007/978-981-99-8285-1Algebraic equation; regularity; Moore—Penrose inverse,; Drazin inverse; group inverse; core inverse; pseud
发表于 2025-3-25 00:59:58 | 显示全部楼层
Gerhardt Nissen,Götz-Erik TrottFortschritt in der Wissenschaft zu neuen Problemlösungen geführt, die eine naht-loseEinbettung von Rechen- und Kommunikationstechnologien in unsere All-tagswelt ermöglichen. Flächendeckende Infrastrukturen und spezialisierte Informationsgeräte sind im Entstehen, was neue Anwendungsfelder der Informa
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 21:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表