找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic Structures and Applications; SPAS 2017, Västerås Sergei Silvestrov,Anatoliy Malyarenko,Milica Ranči Conference proceedings 2020

[复制链接]
楼主: GUAFF
发表于 2025-3-30 10:31:35 | 显示全部楼层
Ore Extensions of Function Algebras,In this article we consider the Ore extension algebra for the algebra . of functions with finite support on a countable set. We derive explicit formulas for twisted derivations on . give a description for the centralizer of . and the center of the Ore extension algebra under specific conditions.
发表于 2025-3-30 13:24:38 | 显示全部楼层
发表于 2025-3-30 16:35:34 | 显示全部楼层
Über den Umgang der Justiz mit Kritiked BiHom-Lie-Leibniz algebra and study various type of .-ary BiHom-Lie algebras and BiHom-associative algebras. We show that .-ary BiHom-Lie-Leibniz algebra can be represented by BiHom-Lie-Leibniz algebra through fundamental objects. Moreover, we provide some key constructions and study .-ary BiHom-Lie algebras induced by .-ary BiHom-Lie algebra.
发表于 2025-3-31 00:10:26 | 显示全部楼层
发表于 2025-3-31 03:42:01 | 显示全部楼层
On ,-ary Generalization of BiHom-Lie Algebras and BiHom-Associative Algebras,ed BiHom-Lie-Leibniz algebra and study various type of .-ary BiHom-Lie algebras and BiHom-associative algebras. We show that .-ary BiHom-Lie-Leibniz algebra can be represented by BiHom-Lie-Leibniz algebra through fundamental objects. Moreover, we provide some key constructions and study .-ary BiHom-Lie algebras induced by .-ary BiHom-Lie algebra.
发表于 2025-3-31 05:18:46 | 显示全部楼层
On Solvability and Nilpotency for ,-Hom-Lie Algebras and ,-Hom-Lie Algebras Induced by ,-Hom-Lie Aland to study their properties. We define .-derived series, .-central descending series and study their properties, we show that .-solvability is a radical property and we apply all of the above to the case of .-Hom-Lie algebras induced by .-Hom-Lie algebras.
发表于 2025-3-31 10:54:24 | 显示全部楼层
发表于 2025-3-31 13:58:55 | 显示全部楼层
发表于 2025-3-31 20:40:16 | 显示全部楼层
发表于 2025-4-1 00:15:51 | 显示全部楼层
Über den Umgang der Justiz mit Kritiked BiHom-Lie-Leibniz algebra and study various type of .-ary BiHom-Lie algebras and BiHom-associative algebras. We show that .-ary BiHom-Lie-Leibniz algebra can be represented by BiHom-Lie-Leibniz algebra through fundamental objects. Moreover, we provide some key constructions and study .-ary BiHom-
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 18:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表