找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic Number Theory; Serge Lang Textbook 1994Latest edition Springer Science+Business Media New York 1994 algebraic number theory.anal

[复制链接]
楼主: 女孩
发表于 2025-3-25 05:44:20 | 显示全部楼层
发表于 2025-3-25 08:33:18 | 显示全部楼层
Graduate Texts in Mathematicshttp://image.papertrans.cn/a/image/152688.jpg
发表于 2025-3-25 13:24:45 | 显示全部楼层
发表于 2025-3-25 19:43:14 | 显示全部楼层
Density of Primes and Tauberian Theoremlized arithmetic progressions determined by Hecke characters. In addition to giving a density for primes in given ideal classes, it also gives densities for primes distributed suitably in Euclidean .-space.
发表于 2025-3-25 22:53:10 | 显示全部楼层
Brucella: Potential Biothreat Agent,This chapter describes the basic aspects of the ring of algebraic integers in a number field (always assumed to be of finite degree over the rational numbers .). This includes the general prime ideal structure.
发表于 2025-3-26 00:13:23 | 显示全部楼层
The Economics of Disarmament and ConversionThis chapter introduces the completions of number fields under the p-adic topologies, and also the completions obtained by embedding the number field into the real or complex numbers.
发表于 2025-3-26 06:17:44 | 显示全部楼层
Policy Drivers and Issues in EuropeThe study of the different and discriminant provides some information on ramified primes, and also gives a sort of duality which plays a role both in the algebraic study of ramification and the later chapters on analytic duality. It also gives a good method for computing the ring of algebraic integers in a number field, as in Proposition 10.
发表于 2025-3-26 09:47:03 | 显示全部楼层
发表于 2025-3-26 15:25:02 | 显示全部楼层
Coman Adrian Viorel,Teodorescu CătălinaWe recall the formula for summation by parts. If {..} and {..} are sequences of complex numbers, and if we let . be the partial sums, then . We shall consider series . where {..} is a sequence of complex numbers, and . is a complex variable. We write . = . + . with ., . real.
发表于 2025-3-26 20:51:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 16:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表