找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic Integrability, Painlevé Geometry and Lie Algebras; Mark Adler,Pierre Moerbeke,Pol Vanhaecke Book 2004 Springer-Verlag Berlin Hei

[复制链接]
查看: 8563|回复: 45
发表于 2025-3-21 17:34:00 | 显示全部楼层 |阅读模式
期刊全称Algebraic Integrability, Painlevé Geometry and Lie Algebras
影响因子2023Mark Adler,Pierre Moerbeke,Pol Vanhaecke
视频video
发行地址Aimed at a wide readership of mathematicians and physicists, graduate students and professionals.The main thrust of the book is to show how algebraic geometry, Lie theory and Painlevé analysis can be
学科分类Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
图书封面Titlebook: Algebraic Integrability, Painlevé Geometry and Lie Algebras;  Mark Adler,Pierre Moerbeke,Pol Vanhaecke Book 2004 Springer-Verlag Berlin Hei
Pindex Book 2004
The information of publication is updating

书目名称Algebraic Integrability, Painlevé Geometry and Lie Algebras影响因子(影响力)




书目名称Algebraic Integrability, Painlevé Geometry and Lie Algebras影响因子(影响力)学科排名




书目名称Algebraic Integrability, Painlevé Geometry and Lie Algebras网络公开度




书目名称Algebraic Integrability, Painlevé Geometry and Lie Algebras网络公开度学科排名




书目名称Algebraic Integrability, Painlevé Geometry and Lie Algebras被引频次




书目名称Algebraic Integrability, Painlevé Geometry and Lie Algebras被引频次学科排名




书目名称Algebraic Integrability, Painlevé Geometry and Lie Algebras年度引用




书目名称Algebraic Integrability, Painlevé Geometry and Lie Algebras年度引用学科排名




书目名称Algebraic Integrability, Painlevé Geometry and Lie Algebras读者反馈




书目名称Algebraic Integrability, Painlevé Geometry and Lie Algebras读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:06:51 | 显示全部楼层
Lie Algebrasll be used. Since algebraic geometry, mainly the geometry of Abelian varieties, will only show up later and since we will need to do in that case a little more than just a review, we defer that subject to Part II of the book.
发表于 2025-3-22 02:14:35 | 显示全部楼层
Poisson Manifoldsnctions on .. and (.., ..., .., .. ..., ..) are linear coordinates on ... He observed that if . and . are two first integrals of a mechanical system (defined on ..) then their . {.} is also a first integral. Notice that the Poisson bracket also allows one to describe the equations of motion in their
发表于 2025-3-22 08:02:43 | 显示全部楼层
发表于 2025-3-22 09:30:39 | 显示全部楼层
发表于 2025-3-22 13:40:00 | 显示全部楼层
A.c.i. Systemsex) momentum map is the best possible complex analogue of the geometry that appears in the Liouville Theorem (Theorem 4.28). Namely, in many relevant examples the generic complexified fiber is an affine part of an . (a compact algebraic torus, see Chapter 5) and the integrable vector fields are tran
发表于 2025-3-22 20:47:15 | 显示全部楼层
发表于 2025-3-23 00:18:23 | 显示全部楼层
Periodic Toda Lattices Associated to Cartan Matricesone, {.., ..} = {.., ..} = 0 and {.., ..} = .., where 1 ≤ . ≤ .. For a mechanical interpretation, consider . unit mass particles on a circle that are connected by exponential springs. In [33], Bogoyavlensky proposed a Lie algebraic generalization, where the original Toda lattice corresponds to the r
发表于 2025-3-23 05:02:18 | 显示全部楼层
An Invitation to Deep Active Learninglid in the real case. For a complex version of the Liouville Theorem, we refer to Section 6.3. Lax equations, which often represent a vector field of an integrable system, are the subject of Sections 4.4 and 4.5.
发表于 2025-3-23 08:55:44 | 显示全部楼层
Deep Belief Nets in C++ and CUDA C: Volume 2slation invariant, when restricted to any of these tori. Such integrable systems are the main topic of this book, and we will call them algebraic completely integrable systems, following the original definition of Adler and van Moerbeke (see [14]).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 17:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表