找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic Informatics; Second International Symeon Bozapalidis,George Rahonis Conference proceedings 2007 Springer-Verlag Berlin Heidelberg

[复制链接]
楼主: Grant
发表于 2025-3-23 11:30:35 | 显示全部楼层
Learning Deterministically Recognizable Tree Series — Revisitednistic wta. The learning is exact, supervised, and uses an adapted minimal adequate teacher; a learning model introduced by Angluin. Our algorithm learns a minimal deterministic wta that recognizes the taught tree series and runs in polynomial time in the size of that wta and the size of the provide
发表于 2025-3-23 16:13:28 | 显示全部楼层
发表于 2025-3-23 22:05:50 | 显示全部楼层
发表于 2025-3-24 02:03:12 | 显示全部楼层
发表于 2025-3-24 04:04:33 | 显示全部楼层
,5 Wondzorg bij patiënten met decubitus,e to the connectivity threshold ... In particular, we examine the size of the second eigenvalue of the transition matrix corresponding to the Markov Chain that describes a random walk on an instance of the symmetric random intersection graph ... We show that with high probability the second eigenvalue is upper bounded by some constant .< 1.
发表于 2025-3-24 06:36:25 | 显示全部楼层
https://doi.org/10.1007/978-3-658-30928-2and a key agreement protocol for sensor networks, both from the SPINS protocol suite, with the OTS/CafeOBJ method, a well known formal specification technique applied not only in research, but also in industry. Based on this specification, we have proved that each protocol possesses an important safety(invariant) property.
发表于 2025-3-24 13:37:41 | 显示全部楼层
发表于 2025-3-24 15:41:55 | 显示全部楼层
The Second Eigenvalue of Random Walks On Symmetric Random Intersection Graphse to the connectivity threshold ... In particular, we examine the size of the second eigenvalue of the transition matrix corresponding to the Markov Chain that describes a random walk on an instance of the symmetric random intersection graph ... We show that with high probability the second eigenvalue is upper bounded by some constant .< 1.
发表于 2025-3-24 21:47:15 | 显示全部楼层
发表于 2025-3-25 00:43:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 03:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表