找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic Groups and Lie Groups with Few Factors; Alfonso Bartolo,Giovanni Falcone,Karl Strambach Book 2008 Springer-Verlag Berlin Heidelb

[复制链接]
楼主: morphology
发表于 2025-3-23 10:51:02 | 显示全部楼层
Environmental Science and Engineeringe a complete classification of three-dimensional connected unipotent algebraic groups defined over a field k of characteristic .2. Some of our results even hold in the case .= 2. A main tool is the theory of extensions, which is particularly efficient for unipotent groups defined over a perfect fiel
发表于 2025-3-23 16:50:40 | 显示全部楼层
Decommissioning Offshore Structures of .(see [87]). Observe that for algebraic subgroups .and .of .with .= ., the group .is an algebraic subgroup, too (see [45], 7.4 Corollary, p. 54)..For affine connected algebraic groups we can sharpen Theorem 1 in [87].
发表于 2025-3-23 20:56:08 | 显示全部楼层
Multi-Purpose Casks for Power Station FuelIn this section we study groups of maximal and minimal nilpotency class.
发表于 2025-3-24 02:05:08 | 显示全部楼层
发表于 2025-3-24 04:54:32 | 显示全部楼层
发表于 2025-3-24 09:14:36 | 显示全部楼层
发表于 2025-3-24 11:52:38 | 显示全部楼层
发表于 2025-3-24 16:53:38 | 显示全部楼层
Decommissioning Offshore Structuresgroups .of .we have either .or .. If .is affine, then .is a chain if and only if it has a unique connected algebraic subgroup of dimension ., for any .= 1., because .is, together with a Borel subgroup of ., nilpotent.
发表于 2025-3-24 19:26:51 | 显示全部楼层
Decommissioning Offshore Structures of .(see [87]). Observe that for algebraic subgroups .and .of .with .= ., the group .is an algebraic subgroup, too (see [45], 7.4 Corollary, p. 54)..For affine connected algebraic groups we can sharpen Theorem 1 in [87].
发表于 2025-3-25 00:44:42 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 22:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表